搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电极材料及偏压极性对氧化物介质击穿行为的影响及机制

王彦彬 刘倩 王勇 代波 魏贤华

引用本文:
Citation:

电极材料及偏压极性对氧化物介质击穿行为的影响及机制

王彦彬, 刘倩, 王勇, 代波, 魏贤华

Effects of electrode materials and bias polarities on breakdown behaviors of oxide dielectrics and their mechanisms

Wang Yan-Bin, Liu Qian, Wang Yong, Dai Bo, Wei Xian-Hua
PDF
HTML
导出引用
  • 忆阻器和能量存储电容器具有相同的三明治结构, 然而两个器件需要的操作电压有明显差异, 因此在同一个器件中, 研究操作电压的影响因素并对操作电压进行调控, 实现器件在不同领域的应用是十分必要的一个工作. 本文利用反应磁控溅射技术在ITO导电玻璃、Pt/Si基底上生长了多晶ZrO2和非晶TaOx薄膜, 选用不同金属材料Au, Ag和Al用作上电极构建了多种金属/氧化物介质/金属三明治结构的电容器, 研究了器件在不同偏压极性下的击穿强度. 结果发现: 底电极是ITO的ZrO2基电容器在负偏压下的击穿电场比Pt电极器件稍大. 不管底电极是ITO还是Pt, Ag作为上电极时器件的击穿强度均存在明显的偏压极性依赖性, 正偏压下的击穿电场减小了一个数量级; 相反, 在Al作为上电极的Al/TaOx/Pt器件中, 正向偏压比负向偏压下的击穿电场增加了近2倍. 上述器件的不同击穿行为分别可以由氧化物电极和介质界面层间氧的迁移和重排、电化学活性金属电极的溶解迁移和还原以及化学活性金属电极与氧化物界面的氧化还原反应来解释. 该实验结果对有不同操作电压要求的器件, 如忆阻器和介质储能电容器等在器件设计和操作方面具有指导意义.
    The memristors and the energy storage capacitors have the same sandwich structure, but the operating voltages required by the two devices are significantly different. Therefore, in the same device, it is necessary to study the influencing factors of operating voltage and adjust the operating voltage of the devices to realize the applications of the device in diverse fields. The polycrystalline ZrO2 and amorphous TaOx thin films are deposited on ITO conductive glass and Pt/Si substrates by reactive magnetron sputtering technology. Au, Ag and Al metal materials are selected as the top electrodes to construct a variety of metal/insulator/metal sandwich capacitors. The breakdown strengths of these devices under different bias polarities are studied. The results demonstrate that the breakdown strength is slightly larger for the ZrO2 based capacitor with ITO as the bottom electrode than for the Pt electrode device under negative bias. The breakdown electric field of the device with Ag as the top electrode shows obvious dependence on bias polarity, no matter whether the bottom electrode is ITO or Pt. The breakdown strength is reduced by more than an order of magnitude under a positive bias (2.13 MV/cm) compared with under a negative bias (0.17 MV/cm) of Ag/ZrO2/ITO device. The breakdown strength of the Al/TaOx/Pt device is enhanced under the forward bias (3.6 MV/cm), contrary to the Ag electrode device, which is nearly twice higher than the breakdown electric field under the negative bias (1.81 MV/cm). The different breakdown behaviors of the above devices can be explained by the migration and rearrangement of oxygen between the oxide electrode and the dielectric interface layer; the dissolution, migration and reduction of the electrochemically active metal electrode; and the redox reaction between the chemically active metal electrode and the oxide dielectric interface. The ZrO2 based capacitor with ITO electrode undergoes a redox reaction of Sn4+ in the ITO under negative bias, forming an insulating layer at the interface between the dielectric layer and the ITO electrode, which contributes a larger breakdown electric field. In addition, the electrochemical metallization process happens to the Ag electrode device under positive bias, and the breakdown electric field is smaller than negative bias due to the large diffusion coefficient of Ag ions in the film, while breakdown is dominated by the defect characteristics of the dielectric film under negative bias. The Al/TaOx/Pt devices can form AlOx oxide layer under positive bias, spontaneously, which can inhibit the leakage current, and also act as a series resistance to disperse part of the voltage and enhance the breakdown voltage of the device. The experimental results have guided significance in designing and operating the devices with different operating voltage requirements, such as memristors and dielectric energy storage capacitors.
      通信作者: 魏贤华, weixianhua@swust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51772252)、四川省科技计划(批准号: 2020JDRC0062)和西南科技大学环境友好能源材料国家重点实验室项目(批准号: 18FKSY0202, 19FKSY09)资助的课题
      Corresponding author: Wei Xian-Hua, weixianhua@swust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51772252), the Science and Technology Program of Sichuan Province, China (Grant No. 2020JDRC0062), and the State Key Laboratory of Environment-friendly Energy Materials Program, Southwest University of Science and Technology, Mianyang, China (Grant Nos. 18FKSY0202, 19FKSY09)
    [1]

    Chua L 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [2]

    Hao X 2013 J. Adv. Dielectr. 3 1330001Google Scholar

    [3]

    Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar

    [4]

    Zheng T, Wu J, Xiao D, Zhu J 2018 Prog. Mater Sci. 98 552Google Scholar

    [5]

    Wang Y, Jie W, Yang C, Wei X, Hao J 2019 Adv. Funct. Mater. 29 1808118Google Scholar

    [6]

    Wang Y, Hu L, Wei X, Zhuge F 2020 Appl. Phys. Lett. 116 221602Google Scholar

    [7]

    Choi J, Park S, Lee J, Hong K, Kim D H, Moon C W, Park G D, Suh J, Hwang J, Kim S Y, Jung H S, Park N G, Han S, Nam K T, Jang H W 2016 Adv. Mater. 28 6562Google Scholar

    [8]

    Hu L, Fu S, Chen Y, Cao H, Liang L, Zhang H, Gao J, Wang J, Zhuge F 2017 Adv. Mater. 29 1606927Google Scholar

    [9]

    Guo J, Wang L, Liu Y, Zhao Z, Zhu E, Lin Z, Wang P, Jia C, Yang S, Lee S J, Huang W, Huang Y, Duan X 2020 Matter 2 965Google Scholar

    [10]

    Guo X, Wang Q, Lü X, Yang H, Sun K, Yang D, Zhang H, Hasegawa T, He D 2020 Nanoscale 12 4320Google Scholar

    [11]

    Liu Y, Ye C, Chang K C, Li L, Jiang B, Xia C, Liu L, Zhang X, Liu X, Xia T, Peng Z, Cao G, Cheng G, Ke S, Wang J 2020 Small 16 2004619Google Scholar

    [12]

    McPherson J W, Jinyoung K, Shanware A, Mogul H, Rodriguez J 2003 IEEE Trans. Electron Devices 50 1771Google Scholar

    [13]

    Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J F, Zhang S 2019 Prog. Mater Sci. 102 72Google Scholar

    [14]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mater. Sci. Eng. R. 83 1Google Scholar

    [15]

    庞华, 邓宁 2014 63 147301Google Scholar

    Pang H, Deng N 2014 Acta Phys. Sin. 63 147301Google Scholar

    [16]

    Liu Q, Sun J, Lü H, Long S, Yin K, Wan N, Li Y, Sun L, Liu M 2012 Adv. Mater. 24 1844Google Scholar

    [17]

    Liu S, Lu N, Zhao X, Xu H, Banerjee W, Lü H, Long S, Li Q, Liu Q, Liu M 2016 Adv. Mater. 28 10623Google Scholar

    [18]

    Li Q, Qiu L, Wei X, Dai B, Zeng H 2016 Sci. Rep. 6 29347Google Scholar

    [19]

    Tian B, Nukala P, Hassine M B, Zhao X, Wang X, Shen H, Wang J, Sun S, Lin T, Sun J, Ge J, Huang R, Duan C, Reiss T, Varela M, Dkhil B, Meng X, Chu J 2017 Phys. Chem. Chem. Phys. 19 16960Google Scholar

    [20]

    Gao W, Yao M, Yao X 2017 Ceram. Int. 43 13069Google Scholar

    [21]

    Gao W, Yao M, Yao X 2018 ACS Appl. Mater. Interfaces 10 28745Google Scholar

    [22]

    Hou C, Huang W, Zhao W, Zhang D, Yin Y, Li X 2017 ACS Appl. Mater. Interfaces 9 20484Google Scholar

    [23]

    Panda D, Tseng T Y 2013 Thin Solid Films 531 1Google Scholar

    [24]

    Kudoh Y, Akami K, Matsuya Y 1999 Synth. Met. 102 973Google Scholar

    [25]

    Matsuhashi H, Nishikawa S 1994 Jpn. J. Appl. Phys. 33 1293Google Scholar

    [26]

    Atanassova E, Paskaleva A 2007 Microelectron. Reliab. 47 913Google Scholar

    [27]

    Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H, Kim Y B, Kim C J, Seo D H, Seo S, Chung U I, Yoo I K, Kim K 2011 Nat. Mater. 10 625Google Scholar

    [28]

    Wu M C, Wu T H, Tseng T Y 2012 J. Appl. Phys. 111 014505Google Scholar

    [29]

    Liu Q, Long S, Wang W, Tanachutiwat S, Li Y, Wang Q, Zhang M, Huo Z, Chen J, Liu M 2010 IEEE Electron Device Lett. 31 1299Google Scholar

    [30]

    Li Y, Long S, Zhang M, Liu Q, Shao L, Zhang S, Wang Y, Zuo Q, Liu S, Liu M 2009 IEEE Electron Device Lett. 31 117Google Scholar

    [31]

    Li C, Wang F, Zhang J, She Y, Zhang Z, Liu L, Liu Q, Hao Y, Zhang K 2020 ECS J. Solid State Sci. Technol 9 041005Google Scholar

    [32]

    Atanassova E, Spassov D, Paskaleva A 2006 Microelectron. Eng. 83 1918Google Scholar

    [33]

    Kindsmüller A, Meledin A, Mayer J, Waser R, Wouters D J 2019 Nanoscale 11 18201Google Scholar

    [34]

    Yuan X C, Tang J L, Zeng H Z, Wei X H 2014 Nanoscale Res. Lett. 9 268Google Scholar

    [35]

    Ye C, Zhan C, Tsai T M, Chang K C, Chen M C, Chang T C, Deng T, Wang H 2014 Appl. Phys. Express 7 034101Google Scholar

    [36]

    Zhang J, Wang F, Li C, Shan X, Liang A, Hu K, Li Y, Liu Q, Hao Y, Zhang K 2020 Appl. Surf. Sci. 526 146723Google Scholar

    [37]

    Wu M C, Ting Y H, Chen J Y, Wu W W 2019 Adv. Sci. 6 1902363Google Scholar

    [38]

    Kuo C C, Chen I C, Shih C C, Chang K C, Huang C H, Chen P H, Chang T, Tsai T M, Chang J S, Huang J C 2015 IEEE Electron Device Lett. 36 1321Google Scholar

  • 图 1  MIM器件用于阻变及储能电容器时的机理图以及对工作电压的要求

    Fig. 1.  Schematic diagram of the MIM devices for resistive switching and energy storage with different operation voltages.

    图 2  ZrO2和TaOx薄膜的XRD, AFM和SEM图 (a) ITO基底上沉积的ZrO2薄膜; (b) Pt/Si基底上沉积的ZrO2薄膜; (c) Pt/Si 基底上沉积的TaOx薄膜

    Fig. 2.  XRD, AFM and SEM patterns of the ZrO2 and TaOx thin films: (a) The ZrO2 thin film deposited on ITO/glass; (b) the ZrO2 thin film deposited on Pt/Si; (c) the TaOx thin film deposited on Pt/Si.

    图 3  ZrO2基电容器的I-E特征曲线 (a) Ag/ZrO2/Pt和Au/ZrO2/Pt器件; (b) Ag/ZrO2/ITO和Au/ZrO2/ITO器件

    Fig. 3.  I-E characteristics of ZrO2 based capacitors: (a) Ag/ZrO2/Pt and Au/ZrO2/Pt; (b) Ag/ZrO2/ITO and Au/ZrO2/ITO.

    图 4  ZrO2基电容器在正负偏压下的击穿电场统计图

    Fig. 4.  Statistical charts of positive and negative breakdown electric field of ZrO2-based capacitors.

    图 5  Pt/Si基底上TaOx基器件 (a) I-E特征曲线; (b)正负偏压下击穿电场值统计图

    Fig. 5.  Positive and negative breakdown electric field of TaOx based devices: (a) I-E characteristics; (b) statistical charts.

    图 6  器件在施加偏压下的击穿机理示意图 (a)负偏压下的Au/ZrO2/ITO器件; (b), (c) 正负偏压下的Ag/ZrO2/Pt器件; (d) 正偏压下的Al/TaOx/Pt器件

    Fig. 6.  Schematic diagrams of the breakdown mechanisms of the devices under different applied biases: (a) The Au/ZrO2/ITO device under negative bias; (b), (c) Ag/ZrO2/Pt devices under positive and negative biases, respectively; (d) the Al/TaOx/Pt device under positive bias.

    Baidu
  • [1]

    Chua L 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [2]

    Hao X 2013 J. Adv. Dielectr. 3 1330001Google Scholar

    [3]

    Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar

    [4]

    Zheng T, Wu J, Xiao D, Zhu J 2018 Prog. Mater Sci. 98 552Google Scholar

    [5]

    Wang Y, Jie W, Yang C, Wei X, Hao J 2019 Adv. Funct. Mater. 29 1808118Google Scholar

    [6]

    Wang Y, Hu L, Wei X, Zhuge F 2020 Appl. Phys. Lett. 116 221602Google Scholar

    [7]

    Choi J, Park S, Lee J, Hong K, Kim D H, Moon C W, Park G D, Suh J, Hwang J, Kim S Y, Jung H S, Park N G, Han S, Nam K T, Jang H W 2016 Adv. Mater. 28 6562Google Scholar

    [8]

    Hu L, Fu S, Chen Y, Cao H, Liang L, Zhang H, Gao J, Wang J, Zhuge F 2017 Adv. Mater. 29 1606927Google Scholar

    [9]

    Guo J, Wang L, Liu Y, Zhao Z, Zhu E, Lin Z, Wang P, Jia C, Yang S, Lee S J, Huang W, Huang Y, Duan X 2020 Matter 2 965Google Scholar

    [10]

    Guo X, Wang Q, Lü X, Yang H, Sun K, Yang D, Zhang H, Hasegawa T, He D 2020 Nanoscale 12 4320Google Scholar

    [11]

    Liu Y, Ye C, Chang K C, Li L, Jiang B, Xia C, Liu L, Zhang X, Liu X, Xia T, Peng Z, Cao G, Cheng G, Ke S, Wang J 2020 Small 16 2004619Google Scholar

    [12]

    McPherson J W, Jinyoung K, Shanware A, Mogul H, Rodriguez J 2003 IEEE Trans. Electron Devices 50 1771Google Scholar

    [13]

    Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J F, Zhang S 2019 Prog. Mater Sci. 102 72Google Scholar

    [14]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mater. Sci. Eng. R. 83 1Google Scholar

    [15]

    庞华, 邓宁 2014 63 147301Google Scholar

    Pang H, Deng N 2014 Acta Phys. Sin. 63 147301Google Scholar

    [16]

    Liu Q, Sun J, Lü H, Long S, Yin K, Wan N, Li Y, Sun L, Liu M 2012 Adv. Mater. 24 1844Google Scholar

    [17]

    Liu S, Lu N, Zhao X, Xu H, Banerjee W, Lü H, Long S, Li Q, Liu Q, Liu M 2016 Adv. Mater. 28 10623Google Scholar

    [18]

    Li Q, Qiu L, Wei X, Dai B, Zeng H 2016 Sci. Rep. 6 29347Google Scholar

    [19]

    Tian B, Nukala P, Hassine M B, Zhao X, Wang X, Shen H, Wang J, Sun S, Lin T, Sun J, Ge J, Huang R, Duan C, Reiss T, Varela M, Dkhil B, Meng X, Chu J 2017 Phys. Chem. Chem. Phys. 19 16960Google Scholar

    [20]

    Gao W, Yao M, Yao X 2017 Ceram. Int. 43 13069Google Scholar

    [21]

    Gao W, Yao M, Yao X 2018 ACS Appl. Mater. Interfaces 10 28745Google Scholar

    [22]

    Hou C, Huang W, Zhao W, Zhang D, Yin Y, Li X 2017 ACS Appl. Mater. Interfaces 9 20484Google Scholar

    [23]

    Panda D, Tseng T Y 2013 Thin Solid Films 531 1Google Scholar

    [24]

    Kudoh Y, Akami K, Matsuya Y 1999 Synth. Met. 102 973Google Scholar

    [25]

    Matsuhashi H, Nishikawa S 1994 Jpn. J. Appl. Phys. 33 1293Google Scholar

    [26]

    Atanassova E, Paskaleva A 2007 Microelectron. Reliab. 47 913Google Scholar

    [27]

    Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H, Kim Y B, Kim C J, Seo D H, Seo S, Chung U I, Yoo I K, Kim K 2011 Nat. Mater. 10 625Google Scholar

    [28]

    Wu M C, Wu T H, Tseng T Y 2012 J. Appl. Phys. 111 014505Google Scholar

    [29]

    Liu Q, Long S, Wang W, Tanachutiwat S, Li Y, Wang Q, Zhang M, Huo Z, Chen J, Liu M 2010 IEEE Electron Device Lett. 31 1299Google Scholar

    [30]

    Li Y, Long S, Zhang M, Liu Q, Shao L, Zhang S, Wang Y, Zuo Q, Liu S, Liu M 2009 IEEE Electron Device Lett. 31 117Google Scholar

    [31]

    Li C, Wang F, Zhang J, She Y, Zhang Z, Liu L, Liu Q, Hao Y, Zhang K 2020 ECS J. Solid State Sci. Technol 9 041005Google Scholar

    [32]

    Atanassova E, Spassov D, Paskaleva A 2006 Microelectron. Eng. 83 1918Google Scholar

    [33]

    Kindsmüller A, Meledin A, Mayer J, Waser R, Wouters D J 2019 Nanoscale 11 18201Google Scholar

    [34]

    Yuan X C, Tang J L, Zeng H Z, Wei X H 2014 Nanoscale Res. Lett. 9 268Google Scholar

    [35]

    Ye C, Zhan C, Tsai T M, Chang K C, Chen M C, Chang T C, Deng T, Wang H 2014 Appl. Phys. Express 7 034101Google Scholar

    [36]

    Zhang J, Wang F, Li C, Shan X, Liang A, Hu K, Li Y, Liu Q, Hao Y, Zhang K 2020 Appl. Surf. Sci. 526 146723Google Scholar

    [37]

    Wu M C, Ting Y H, Chen J Y, Wu W W 2019 Adv. Sci. 6 1902363Google Scholar

    [38]

    Kuo C C, Chen I C, Shih C C, Chang K C, Huang C H, Chen P H, Chang T, Tsai T M, Chang J S, Huang J C 2015 IEEE Electron Device Lett. 36 1321Google Scholar

  • [1] 孙雨婷, 李明明, 王玲瑞, 樊贞, 郭尔佳, 郭海中. 外场对拓扑相变氧化物薄膜物性的调控研究进展.  , 2023, 72(9): 096801. doi: 10.7498/aps.72.20222266
    [2] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略.  , 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [3] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔. 光电协控多层MoS2记忆晶体管的阻变行为与机理研究.  , 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [4] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展.  , 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [5] 董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏. 面向高温介电储能应用的聚合物基电介质材料研究进展.  , 2020, 69(21): 217701. doi: 10.7498/aps.69.20201006
    [6] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型.  , 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [7] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析.  , 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [8] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现.  , 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [9] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件.  , 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [10] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华. 基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究.  , 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [11] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器.  , 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [12] 吴全潭, 时拓, 赵晓龙, 张续猛, 伍法才, 曹荣荣, 龙世兵, 吕杭炳, 刘琦, 刘明. 基于六角氮化硼二维薄膜的忆阻器.  , 2017, 66(21): 217304. doi: 10.7498/aps.66.217304
    [13] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现.  , 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [14] 邵楠, 张盛兵, 邵舒渊. 具有突触特性忆阻模型的改进与模型经验学习特性机理.  , 2016, 65(12): 128503. doi: 10.7498/aps.65.128503
    [15] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器.  , 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [16] 郭羽泉, 段书凯, 王丽丹. 纳米级尺寸参数对钛氧化物忆阻器的特性影响.  , 2015, 64(10): 108502. doi: 10.7498/aps.64.108502
    [17] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响.  , 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [18] 田晓波, 徐晖, 李清江. 横截面积参数对钛氧化物忆阻器导电特性的影响.  , 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [19] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展.  , 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [20] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展.  , 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
计量
  • 文章访问数:  6117
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-04
  • 修回日期:  2020-12-15
  • 上网日期:  2021-04-01
  • 刊出日期:  2021-04-20

/

返回文章
返回
Baidu
map