搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外场对拓扑相变氧化物薄膜物性的调控研究进展

孙雨婷 李明明 王玲瑞 樊贞 郭尔佳 郭海中

引用本文:
Citation:

外场对拓扑相变氧化物薄膜物性的调控研究进展

孙雨婷, 李明明, 王玲瑞, 樊贞, 郭尔佳, 郭海中

Research progress of control of physical properties of topological phase change oxide films by external field

Sun Yu-Ting, Li Ming-Ming, Wang Ling-Rui, Fan Zhen, Guo Er-Jia, Guo Hai-Zhong
PDF
HTML
导出引用
  • 钙钛矿型过渡金属氧化物在外场激励下可以通过得失氧离子发生显著的结构拓扑相变, 同时伴随着输运、磁性、光学等物性的巨大变化, 是近年来被重点关注的研究体系, 在固态氧化物燃料电池、氧气传感器、催化活性、智能光学窗口以及神经形态计算器件中具有巨大的应用前景. 本工作回顾了近年来国内外研究小组在拓扑相变氧化物薄膜及其物性调控方面的工作进展, 详细介绍了这类典型薄膜材料在应力场、电场、光场、温度场等外场激励下呈现出的新奇物性, 并讨论了其基本物理机制. 本综述旨在进一步认识此类材料中的电荷、晶格、轨道等量子序之间的微观耦合机制及其与宏观物性的关联, 相关研究有望为基于功能氧化物的高灵敏度、弱场响应的电子器件提供新材料、新途径和新思路.
    Perovskite transition-metal oxides can undergo significant structural topological phase transition between perovskite structure, brownmillerite structure, and infinite-layer structure under the external field through the gain and loss of the oxygen ions, accompanied with significant changes in physical properties such as transportation, magnetism, and optics. Topotactic phase transformation allows structural transition without losing the crystalline symmetry of the parental phase and provides an effective platform for utilizing the redox reaction and oxygen diffusion within transition metal oxides, and establishing great potential applications in solid oxide fuel cells, oxygen sensors, catalysis, intelligent optical windows, and neuromorphic devices. In this work, we review the recent research progress of manipulating the topological phase transition of the perovskite-type oxide films and regulating their physical properties, mainly focusing on tuning the novel physical properties of these typical films through strong interaction between the lattice and electronic degrees of freedom by the action of external fields such as strain, electric field, optical field, and temperature field. For example, a giant photoinduced structure distortion in SrCoO2.5 thin film excited by photons is observed to be higher than any previously reported results in the other transition metal oxide films. The SrFeO2 films undergo an insulator-to-metal transition when the strain state changes from compressive state to tensile state. It is directly observed that perovskite SrFeO3 nanofilament is formed under the action of electric field and extends almost through the brownmillerite SrFeO2.5 matrix in the ON state and is ruptured in the OFF state, unambiguously revealing a filamentary resistance switching mechanism. Utilizing in situ electrical scanning transmission electron microscopy, the transformation from brownmillerite SrFeO2.5 to infinite-layer SrFeO2 under electric field can be directly visualized with atomic resolution. We also clarify the relationship between the microscopic coupling mechanism and the macroscopic quantum properties of charges, lattices, orbits, spin, etc. Relevant research is expected to provide a platform for new materials, new approaches and new ideas for developing high-sensitivity and weak-field response electronic devices based on functional oxides. These findings about the topological phase transition in perovskite oxide films can expand the research scope of material science, and have important significance in exploring new states of matters and studying quantum critical phenomena.
      通信作者: 郭海中, hguo@zzu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFA1400204, 2021YFA0718701)、国家自然科学基金(批准号: 12174347, 11904322, U2032127)、河南省科技厅杰出青年基金(批准号: 202300410356)和广州市科技计划(批准号: 202201000008)资助的课题.
      Corresponding author: Guo Hai-Zhong, hguo@zzu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400204, 2021YFA0718701), the National Natural Science Foundation of China (Grant Nos. 12174347, 11904322, U2032127), the Science and Technology Department Fund for Distinguished Young Scholars of Henan Province, China (Grant No. 202300410356), and the Science and Technology Program Project of Guangzhou, China (Grant No. 202201000008).
    [1]

    Kroemer H 2001 Rev. Mod. Phys. 73 783Google Scholar

    [2]

    Moreo A, Yunoki S, Dagotto E 1999 Science 283 2034Google Scholar

    [3]

    Habermeier H U 2007 Mater. Today 10 34Google Scholar

    [4]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [5]

    Guo H Z, Wang J O, He X, Yang Z Z, Zhang Q H, Jin K J, Ge C, Zhao R Q, Gu L, Feng Y Q, Zhou W J, Li X L, Wan Q, He M, Hong C H, Guo Z Y, Wang C, Lu H B, Ibrahim K, Meng S, Yang H, Yang G Z Z 2016 Adv. Mater. Interfaces 3 1500753Google Scholar

    [6]

    Wang X S, Zhou L, Li M X, Luo Y, Yang T Y, Wu T L, Li L X, Jin K J, Guo E J, Wang L F, Bai X D, Zhang W F, Guo H Z 2020 Sci. China Phys. Mech. Astron. 63 297011Google Scholar

    [7]

    Heber J 2009 Nature 459 28Google Scholar

    [8]

    Maekawa S, Tohyama T, Barnes S E, Ishihara S, Koshibae W, Khaliullin G 2004 Physics of Transition Metal Oxides (Vol. 144) (Berlin, Heidelberg: Springer) pp167−239

    [9]

    Mou X, Tang J S, Lyu Y J, Zhang Q T, Yang S Y, Xu F, Liu W, Xu M H, Zhou Y, Sun W, Zhong Y N, Gao B, Yu P, Qian H, Wu H Q 2021 Sci. Adv. 7 eabh0648Google Scholar

    [10]

    Kim Y M, He J, Biegalski M D, Ambaye H, Lauter V, Christen H M, Pantelides S T, Pennycook S J, Kalinin S V, Borisevich A Y 2012 Nat. Mater. 11 888Google Scholar

    [11]

    Wang Z, Huang H M, Guo X 2021 Adv. Electron. Mater. 7 2001243Google Scholar

    [12]

    Ge C, Liu C X, Zhou Q L, Zhang Q H, Du J Y, Li J K, Wang C, Gu L, Yang G Z, Jin K J 2019 Adv. Mater. 31 1900379Google Scholar

    [13]

    Gallagher P K, MacChesney J B, Buchananb D N E 1964 J. Chem. Phys. 41 2429Google Scholar

    [14]

    Takeda T, Yamaguchi Y, Watanabe H 1972 J. Phys. Soc. Jpn. 33 967Google Scholar

    [15]

    Lebon A, Adler P, Bernhard C, Boris A V, Pimenov A V, Maljuk A, Lin C T, Ulrich C, Keimer B 2004 Phys. Rev. Lett. 92 037202Google Scholar

    [16]

    Tsujimoto Y, Tassel C, Hayashi N, Watanabe T, Kageyama H, Yoshimura K, Takano M, Ceretti M, Ritter C, Paulus W 2007 Nature 450 1062Google Scholar

    [17]

    Siegrist T, Zahurak S M, Murphy D W, Roth R S 1988 Nature 334 231Google Scholar

    [18]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [19]

    Chen S, Zhao J L, Jin Q, Lin S, Chen S R, Yao H B, Wang J O, Fan Z, Guo E J, Guo H Z 2021 Sci. Chin. Phys. Mech. Astron. 64 287711Google Scholar

    [20]

    Jeen H, Choi W S, Biegalski M D, Folkman C M, Tung I C, Fong D D, Freeland J W, Shin D, Ohta H, Chisholm M F, Lee H N 2013 Nat. Mater. 12 1057Google Scholar

    [21]

    Agrawal P, Guo J, Yu P, Hébert C, Passerone D, Erni R, Rossell M D 2016 Phys. Rev. B 94 104101Google Scholar

    [22]

    Petrie J R, MitraC, Jeen H, Choi W S, Meyer T L, Reboredo F A, Freeland J W, Eres G, Lee H N 2016 Adv. Funct. Mater. 26 1564Google Scholar

    [23]

    Nemudry A, Rudolf P, Schöllhorn R 1996 Chem. Mater. 8 2232Google Scholar

    [24]

    Zhang K H L, Sushko P V, Colby R, Du Y, Bowden M E, Chambers S A 2014 Nat. Commun. 5 4669Google Scholar

    [25]

    Jeen H, Choi W S, Freeland J W, Ohta H, Jung C U, Lee H N 2013 Adv. Mater. 25 3651Google Scholar

    [26]

    Lu Q Y, Huberman S, Zhang H, Song Q C, Wang J Y, Vardar G, Hunt A, Waluyo I, Chen G, Yildiz B 2020 Nat. Mater. 19 655Google Scholar

    [27]

    Li H B, Kobayashi S, Zhong C, Namba M, Cao Y, Kato D, Kotani Y, Lin Q, Wu M, Wang W H, Kobayashi M, Fujita K, Tassel C, Terashima T, Kuwabara A, Kobayashi Y, Takatsu H, Kageyama H 2021 J. Am. Chem. Soc. 143 17517Google Scholar

    [28]

    Lu N P, Zhang P F, Zhang Q H, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124Google Scholar

    [29]

    Petrie J R, Jeen H, Barron S C, Meyer T L, Lee H N 2016 J. Am. Chem. Soc. 138 7252Google Scholar

    [30]

    Wang Y J, He Q, Ming W M, Du M H, Lu N P, Cafolla C, Fujioka J, Zhang Q H, Zhang D, Shen S C, Lyu Y J, N’Diaye A T, Arenholz E, Gu L, Nan C W, Tokura Y, Okamoto S, Yu P 2020 Phys. Rev. X 10 021030Google Scholar

    [31]

    Zhao J L, Guo H Z, He X, Zhang Q H, Gu L, Li X L, Jin K J, Ge C, Luo Y, He M, Long Y W, Wang J O, Qian H J, Wang C, Lu H B, Yang G Z, Ibrahim K 2018 ACS Appl. Mater. Interfaces 10 10211Google Scholar

    [32]

    Zhao J L, Luo Y, Wang J O, Qian H J, Liu C, He X, Zhang Q H, Huang H Y, Zhang B B, Li S F, Guo E J, Ge C, Yang T Y, Li X L, He M, Gu L, Jin K J, Ibrahim K, Guo H Z 2019 Sci. China. Mater. 62 1162Google Scholar

    [33]

    Zhao J L, Chen K H, Li S E, Zhang Q H, Wang J O, Guo E J, Qian H J, Gu L, Qian T, Ibrahim K, Fan Z, Guo H Z 2022 J. Phys. Condens. Matter 34 064001Google Scholar

    [34]

    Li S S, Wang J O, Zhang Q H, Roldan M A, Shan L, Jin Q, Chen S R, Wu Z, Wang C, Ge C, He M, Guo H Z, Gu L, Jin K J, Guo E J 2019 Phys. Rev. Mater. 3 114409Google Scholar

    [35]

    Li S S, Zhang Q H, Lin S, Sang X H, Need R F, Roldan M A, Cui W J, Hu Z Y, Jin Q, Chen S, Zhao J L, Wang J O, Wang J S, He M, Ge C, Wang C, Lu H B, Wu Z P, Guo H Z, Tong X, Zhu T, Kirby B, Gu L, Jin K J, Guo E J 2021 Adv. Mater. 33 2001324Google Scholar

    [36]

    Zhang Q H, Meng F Q, Gao A, Li X Y, Jin Q, Lin S, Chen S R, Shang T T, Zhang X, Guo H Z, Wang C, Jin K J, Wang X F, Su D, Gu L, Guo E J 2021 Nano Lett. 21 10507Google Scholar

    [37]

    Hu K J, Zhang X Y, Chen P F, Lin R J, Zhu J L, Huang Z, Du H F, Song D S, Ge B H 2022 Mater. Today Phys. 29 100922Google Scholar

    [38]

    Callori S J, Hu S, Bertinshaw J, Yue Z J, Danilkin S, Wang X L, Nagarajan V, Klose F, Seidel J, Ulrich C 2015 Phys. Rev. B 91 140405Google Scholar

    [39]

    Choi W S, Kwon J, Jeen H, Hamann-Borrero J E, Radi A, Macke S, Sutarto R, He F Z, Sawatzky G A, Hinkov V, Kim M, Lee H N 2012 Nano Lett. 12 4966Google Scholar

    [40]

    Zhang Y P, Liu H F, Hu H L, Xie R S, Ma GH, Huo J C, Wang H B 2018 Roy. Soc. Open Sci. 5 171376Google Scholar

    [41]

    Meng D C, Guo H L, Cui Z Z, Ma C, Zhao J L, Lu J B, Xu H, Wang Z C, Hu X, Fu Z P, Peng R R, Guo J H, Zhai X F, Brown Gail J, Knize R, Lu Y L 2018 Proc. Natl Acad. Sci. USA 115 2873Google Scholar

    [42]

    Zhao H B, Talbayev D, Ma X, Ren Y H, Venimadhav A, Li Q, Lüpke G 2011 Phys. Rev. Lett. 107 207205Google Scholar

    [43]

    Ge C, Jin K J, Zhang Q H, Du J Y, Gu L, Guo H Z, Yang J T, Gu J X, He M, Xing J, Wang C, Lu H B, Yang G Z 2016 ACS Appl. Mater. Interface 8 34590Google Scholar

    [44]

    Wen H, Chen P, Cosgriff M P, Walko D A, Lee J H, Adamo C, Schaller R D, Ihlefeld J F, Dufresne E M, Schlom D G, Evans P G, Freeland J W, Li Y L 2013 Phys. Rev. Lett. 110 037601Google Scholar

    [45]

    Zhou Y, You L, Wang S W, Ku Z L, Fan H J, Schmidt D, Rusydi A, Chang L, Wang L, Ren P, Chen L F, Yuan G L, Chen L, Wang J L 2016 Nat. Commun. 7 11193Google Scholar

    [46]

    Zhang B, He X, Zhao J L, Yu C, Wen H, Meng S, Bousquet E, Li Y, Ge C, Jin K J, Tao Y, Guo H Z 2019 Phys. Rev. B 100 144201Google Scholar

    [47]

    刘旭, 黄昱, 毛婧一, 陈黎明 2021 70 186202Google Scholar

    Liu X, Huang Y, Mao J Y, Chen L M 2021 Acta Phys. Sin. 70 186202Google Scholar

    [48]

    Zhang Q H, He X, Shi J N, Lu N P, Li H B, Yu Q, Zhang Z, Chen L Q, Morris B, Xu Q, Yu P, Gu L, Jin K J, Nan C W 2017 Nat. Commun. 8 104Google Scholar

    [49]

    Acharya S K, Nallagatla R V, Togibasa O, Lee B W, Liu C, Jung C U, Park B H, Park J Y, Cho Y, Kim D W, Jo J, Kwon D H, Kim M, Hwang C S, Chae S C 2016 ACS Appl. Mater. Interfaces 8 7902Google Scholar

    [50]

    Tambunan T, Parwanta K J, Acharya S K, Lee B W, Jung C U, Kim Y S, Park B H, Jeong H, Park J Y, Cho M R, Park Y D, Choi W S, Kim D W, Jin H, Lee S, Song S J, Kang S J, Kim M, Hwang C S 2014 Appl. Phys. Lett. 105 063507Google Scholar

    [51]

    Li H B, Lu N P, Zhang Q H, Wang Y, Feng D, Chen T, Yang S, Duan Z, Li Z, Shi Y, Wang W, Wang W H, Jin K, Liu H, Ma J, Gu L, Nan C, Yu P 2017 Nat. Commun. 8 2156Google Scholar

    [52]

    Zhu L, Gao L, Wang L F, Xu Z, Wang J L, Li X M, Liao L, Huang T T, Huang H L, Ji A L, Lu N P, Cao Z X, Li Q, Sun J R, Yu P, Bai X D 2021 Chem. Mater. 33 3113Google Scholar

    [53]

    Lu Q Y, Yildiz B 2016 Nano Lett. 16 1186Google Scholar

    [54]

    Tian J J, Wu H J, Fan Z, Zhang Y, Pennycook S J, Zheng D F, Tan Z W, Guo H Z, Yu P, Lu X B, Zhou G F, Gao X S, Liu J M 2019 Adv. Mater. 31 1903679Google Scholar

    [55]

    Tian J J, Zhang Y, Fan Z, Wu H J, Zhao L, Rao J J, Chen Z H, Guo H Z, Lu X B, Zhou G F, Pennycook S J, Gao X S, Liu J M 2020 ACS Appl. Mater. Interfaces 12 21883Google Scholar

    [56]

    Rao J J, Fan Z, Hong L Q, Cheng S L, Huang Q C, Zhao J L, Xiang X P, Guo E J, Guo H, Hou Z P, Chen Y, Lu X B, Zhou G, Gao X S, Liu J M 2021 Mater. Today Phys. 18 100392Google Scholar

    [57]

    Chen K H, Fan Z, Rao J J, Li W J, Wang D M, Li C J, Zhong G K, Tao R Q, Tian G, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J M 2022 J. Materiomics 8 967Google Scholar

    [58]

    Lu S C, Yin F, Wang Y J, Lu N P, Gao L, Peng H N, Lyu Y J, Long Y W, Li J, Yu P 2022 Adv. Funct. Mater. 33 2210377Google Scholar

    [59]

    Cui B, Huan Y, Hu J F 2020 J. Phys. Condens. Matter 32 344001Google Scholar

  • 图 1  钙钛矿型氧化物基本构型及其衍生结构 (a)钙钛矿结构ABO3; (b)钙铁石结构ABO2.5; (c)无限层结构ABO2

    Fig. 1.  Perovskite structure and its derived structures: (a) Perovskite ABO3; (b) brownmillerite ABO2.5; (c) infinite-layer structure ABO2.

    图 2  不同应力情况下SrFeO2薄膜的输运性质和电子结构[19] (a) SrFeO2薄膜面外晶格常数与晶格失配的线性关系; (b)生长在 DyScO3 (DSO)和SrTiO3 (STO) 衬底上的 SrFeO2 膜的ρ-T 曲线; (c) 不同应力衬底上SrFeO2薄膜的X光吸收光谱(XAS), 实线和虚线分别代表光束分别以90°和30°入射; (d) 不同衬底上SrFeO2薄膜的X射线线性二色性(XLD)

    Fig. 2.  Transport properties and electronic states of SrFeO2 films[19]: (a) The out-of-plane lattice constants of SrFeO2 films as a function of the misfit strain; (b) ρ-T curves of SrFeO2 films grown on DSO and STO substrate; (c) XAS and (d) XLD for SrFeO2 films grown on various substrates. The solid and dashed lines in (c) represent the XAS measured with X-ray beam aligned with angles of 90° and 30° respect to the sample’s surface normal, respectively.

    图 3  超快激光激发诱导SrCoO2.5薄膜超大晶格膨胀[46] (a) 3.1 eV脉冲激光激发时SrCoO2.5薄膜的(008)衍射强度分布; (b) 激光激发前后SrCoO2.5薄膜(008)反射的θ-2θ扫描; (c) 在不同的泵浦注量和光子能量下, 获得的(008)峰的角位移和对应的应力与时间的关系曲线, 其中一个根据经验拟合为双指数衰减函数; (d) τ = 150 ps时的光致应力与3.1 eV和1.55 eV脉冲激光激发时入射通量的关系曲线, 并线性拟合数据结果

    Fig. 3.  Superlarge lattice expansion of SrCoO2.5 films is induced by ultrafast laser excitation[46]: (a) Diffraction intensity distribution upon the excitation of 3.1 eV laser pulses; (b) θ-2θ scans of the SrCoO2.5 (008) reflection before and after excitation; (c) the extracted angular shift of (008) peak and the corresponding strain as a function of time at different pump fluence and photon energies, one of which is empirically fitted to a biexponential decay function; (d) photoinduced strain at τ = 150 ps as a function of incident fluence upon excitation of 3.1 eV and 1.55 eV laser pulses, together with a linear fit to the data.

    图 4  实时观察电场调控下形成无限层SrFeO2的演化过程[52] (a)加电场不同时间下的高分辨率TEM图像显示SrFeO2的逐层转变过程; (b)图(a)电镜图对应的快速傅里叶变换图, SrFeO2.5的(002)和(006)衍射点用黄色虚线圆圈标记, 新形成的SrFeO2衍射点由红色箭头标记; (c)对应于图(a)中TEM图所展示的SrFeO2.5到SrFeO2相变过程的结构图示图

    Fig. 4.  Real-time tracking of the electrically controlled formation of infinite-layer SrFeO2 and its atomic process[52]: (a) Time-lapse high-resolution TEM images showing the further layer-by-layer transition to SrFeO2 under the electric field; (b) the corresponding fast Fourier transform (FFT) of the TEM images in (a), the (002) and (006) diffraction spots in SrFeO2.5 are marked by dashed yellow circles. The newly formed diffraction spots of SrFeO2 were marked by the red arrows; (c) structure illustration of the phase transition from SrFeO2.5 to SrFeO2 corresponding to the TEM images in (a).

    图 5  SrFeO2.5基阻变器件的微观机制和细丝模型的示意图 (a)加电场状态下SrFeO2.5薄膜的透射电子显微镜暗场图像, 显示一些典型的SrFeO3纳米丝产生并沿电场方向延伸几乎穿过整个SrFeO2.5薄膜; (b) Pt/SrFeO2.5/SrRuO3阻变器件的I-V特性显示了典型的双极电阻开关行为. 细丝模型的示意图: (c)初始状态下SrFeO2.5膜; (d)电场下SrFeO3相的导电细丝的形成; (e)以及复位后SrFeO3相的导电细丝断裂的示意图[54]

    Fig. 5.  Micromechanics of the SrFeO2.5 based resistance switching devices and filamentary resistance switching mechanism[54]: (a) STEM-HAADF image of the SrFeO2.5 film in the electroformed state, showing some typical SrFeO3 nanofilaments almost extending through the SrFeO2.5 matrix; (b) typical I-V characteristics showing bipolar resistive switching behavior with an electroforming process of the Pt/SrFeO2.5/SrRuO3 devices. Schematics illustrating of (c) the pristine SrFeO2.5 film with the SrFeO2.5 matrix, (d) the formation of SrFeO3 conductive filaments after the electroforming, and (e) the rupture of SrFeO3 conductive filaments after the reset.

    Baidu
  • [1]

    Kroemer H 2001 Rev. Mod. Phys. 73 783Google Scholar

    [2]

    Moreo A, Yunoki S, Dagotto E 1999 Science 283 2034Google Scholar

    [3]

    Habermeier H U 2007 Mater. Today 10 34Google Scholar

    [4]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [5]

    Guo H Z, Wang J O, He X, Yang Z Z, Zhang Q H, Jin K J, Ge C, Zhao R Q, Gu L, Feng Y Q, Zhou W J, Li X L, Wan Q, He M, Hong C H, Guo Z Y, Wang C, Lu H B, Ibrahim K, Meng S, Yang H, Yang G Z Z 2016 Adv. Mater. Interfaces 3 1500753Google Scholar

    [6]

    Wang X S, Zhou L, Li M X, Luo Y, Yang T Y, Wu T L, Li L X, Jin K J, Guo E J, Wang L F, Bai X D, Zhang W F, Guo H Z 2020 Sci. China Phys. Mech. Astron. 63 297011Google Scholar

    [7]

    Heber J 2009 Nature 459 28Google Scholar

    [8]

    Maekawa S, Tohyama T, Barnes S E, Ishihara S, Koshibae W, Khaliullin G 2004 Physics of Transition Metal Oxides (Vol. 144) (Berlin, Heidelberg: Springer) pp167−239

    [9]

    Mou X, Tang J S, Lyu Y J, Zhang Q T, Yang S Y, Xu F, Liu W, Xu M H, Zhou Y, Sun W, Zhong Y N, Gao B, Yu P, Qian H, Wu H Q 2021 Sci. Adv. 7 eabh0648Google Scholar

    [10]

    Kim Y M, He J, Biegalski M D, Ambaye H, Lauter V, Christen H M, Pantelides S T, Pennycook S J, Kalinin S V, Borisevich A Y 2012 Nat. Mater. 11 888Google Scholar

    [11]

    Wang Z, Huang H M, Guo X 2021 Adv. Electron. Mater. 7 2001243Google Scholar

    [12]

    Ge C, Liu C X, Zhou Q L, Zhang Q H, Du J Y, Li J K, Wang C, Gu L, Yang G Z, Jin K J 2019 Adv. Mater. 31 1900379Google Scholar

    [13]

    Gallagher P K, MacChesney J B, Buchananb D N E 1964 J. Chem. Phys. 41 2429Google Scholar

    [14]

    Takeda T, Yamaguchi Y, Watanabe H 1972 J. Phys. Soc. Jpn. 33 967Google Scholar

    [15]

    Lebon A, Adler P, Bernhard C, Boris A V, Pimenov A V, Maljuk A, Lin C T, Ulrich C, Keimer B 2004 Phys. Rev. Lett. 92 037202Google Scholar

    [16]

    Tsujimoto Y, Tassel C, Hayashi N, Watanabe T, Kageyama H, Yoshimura K, Takano M, Ceretti M, Ritter C, Paulus W 2007 Nature 450 1062Google Scholar

    [17]

    Siegrist T, Zahurak S M, Murphy D W, Roth R S 1988 Nature 334 231Google Scholar

    [18]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [19]

    Chen S, Zhao J L, Jin Q, Lin S, Chen S R, Yao H B, Wang J O, Fan Z, Guo E J, Guo H Z 2021 Sci. Chin. Phys. Mech. Astron. 64 287711Google Scholar

    [20]

    Jeen H, Choi W S, Biegalski M D, Folkman C M, Tung I C, Fong D D, Freeland J W, Shin D, Ohta H, Chisholm M F, Lee H N 2013 Nat. Mater. 12 1057Google Scholar

    [21]

    Agrawal P, Guo J, Yu P, Hébert C, Passerone D, Erni R, Rossell M D 2016 Phys. Rev. B 94 104101Google Scholar

    [22]

    Petrie J R, MitraC, Jeen H, Choi W S, Meyer T L, Reboredo F A, Freeland J W, Eres G, Lee H N 2016 Adv. Funct. Mater. 26 1564Google Scholar

    [23]

    Nemudry A, Rudolf P, Schöllhorn R 1996 Chem. Mater. 8 2232Google Scholar

    [24]

    Zhang K H L, Sushko P V, Colby R, Du Y, Bowden M E, Chambers S A 2014 Nat. Commun. 5 4669Google Scholar

    [25]

    Jeen H, Choi W S, Freeland J W, Ohta H, Jung C U, Lee H N 2013 Adv. Mater. 25 3651Google Scholar

    [26]

    Lu Q Y, Huberman S, Zhang H, Song Q C, Wang J Y, Vardar G, Hunt A, Waluyo I, Chen G, Yildiz B 2020 Nat. Mater. 19 655Google Scholar

    [27]

    Li H B, Kobayashi S, Zhong C, Namba M, Cao Y, Kato D, Kotani Y, Lin Q, Wu M, Wang W H, Kobayashi M, Fujita K, Tassel C, Terashima T, Kuwabara A, Kobayashi Y, Takatsu H, Kageyama H 2021 J. Am. Chem. Soc. 143 17517Google Scholar

    [28]

    Lu N P, Zhang P F, Zhang Q H, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124Google Scholar

    [29]

    Petrie J R, Jeen H, Barron S C, Meyer T L, Lee H N 2016 J. Am. Chem. Soc. 138 7252Google Scholar

    [30]

    Wang Y J, He Q, Ming W M, Du M H, Lu N P, Cafolla C, Fujioka J, Zhang Q H, Zhang D, Shen S C, Lyu Y J, N’Diaye A T, Arenholz E, Gu L, Nan C W, Tokura Y, Okamoto S, Yu P 2020 Phys. Rev. X 10 021030Google Scholar

    [31]

    Zhao J L, Guo H Z, He X, Zhang Q H, Gu L, Li X L, Jin K J, Ge C, Luo Y, He M, Long Y W, Wang J O, Qian H J, Wang C, Lu H B, Yang G Z, Ibrahim K 2018 ACS Appl. Mater. Interfaces 10 10211Google Scholar

    [32]

    Zhao J L, Luo Y, Wang J O, Qian H J, Liu C, He X, Zhang Q H, Huang H Y, Zhang B B, Li S F, Guo E J, Ge C, Yang T Y, Li X L, He M, Gu L, Jin K J, Ibrahim K, Guo H Z 2019 Sci. China. Mater. 62 1162Google Scholar

    [33]

    Zhao J L, Chen K H, Li S E, Zhang Q H, Wang J O, Guo E J, Qian H J, Gu L, Qian T, Ibrahim K, Fan Z, Guo H Z 2022 J. Phys. Condens. Matter 34 064001Google Scholar

    [34]

    Li S S, Wang J O, Zhang Q H, Roldan M A, Shan L, Jin Q, Chen S R, Wu Z, Wang C, Ge C, He M, Guo H Z, Gu L, Jin K J, Guo E J 2019 Phys. Rev. Mater. 3 114409Google Scholar

    [35]

    Li S S, Zhang Q H, Lin S, Sang X H, Need R F, Roldan M A, Cui W J, Hu Z Y, Jin Q, Chen S, Zhao J L, Wang J O, Wang J S, He M, Ge C, Wang C, Lu H B, Wu Z P, Guo H Z, Tong X, Zhu T, Kirby B, Gu L, Jin K J, Guo E J 2021 Adv. Mater. 33 2001324Google Scholar

    [36]

    Zhang Q H, Meng F Q, Gao A, Li X Y, Jin Q, Lin S, Chen S R, Shang T T, Zhang X, Guo H Z, Wang C, Jin K J, Wang X F, Su D, Gu L, Guo E J 2021 Nano Lett. 21 10507Google Scholar

    [37]

    Hu K J, Zhang X Y, Chen P F, Lin R J, Zhu J L, Huang Z, Du H F, Song D S, Ge B H 2022 Mater. Today Phys. 29 100922Google Scholar

    [38]

    Callori S J, Hu S, Bertinshaw J, Yue Z J, Danilkin S, Wang X L, Nagarajan V, Klose F, Seidel J, Ulrich C 2015 Phys. Rev. B 91 140405Google Scholar

    [39]

    Choi W S, Kwon J, Jeen H, Hamann-Borrero J E, Radi A, Macke S, Sutarto R, He F Z, Sawatzky G A, Hinkov V, Kim M, Lee H N 2012 Nano Lett. 12 4966Google Scholar

    [40]

    Zhang Y P, Liu H F, Hu H L, Xie R S, Ma GH, Huo J C, Wang H B 2018 Roy. Soc. Open Sci. 5 171376Google Scholar

    [41]

    Meng D C, Guo H L, Cui Z Z, Ma C, Zhao J L, Lu J B, Xu H, Wang Z C, Hu X, Fu Z P, Peng R R, Guo J H, Zhai X F, Brown Gail J, Knize R, Lu Y L 2018 Proc. Natl Acad. Sci. USA 115 2873Google Scholar

    [42]

    Zhao H B, Talbayev D, Ma X, Ren Y H, Venimadhav A, Li Q, Lüpke G 2011 Phys. Rev. Lett. 107 207205Google Scholar

    [43]

    Ge C, Jin K J, Zhang Q H, Du J Y, Gu L, Guo H Z, Yang J T, Gu J X, He M, Xing J, Wang C, Lu H B, Yang G Z 2016 ACS Appl. Mater. Interface 8 34590Google Scholar

    [44]

    Wen H, Chen P, Cosgriff M P, Walko D A, Lee J H, Adamo C, Schaller R D, Ihlefeld J F, Dufresne E M, Schlom D G, Evans P G, Freeland J W, Li Y L 2013 Phys. Rev. Lett. 110 037601Google Scholar

    [45]

    Zhou Y, You L, Wang S W, Ku Z L, Fan H J, Schmidt D, Rusydi A, Chang L, Wang L, Ren P, Chen L F, Yuan G L, Chen L, Wang J L 2016 Nat. Commun. 7 11193Google Scholar

    [46]

    Zhang B, He X, Zhao J L, Yu C, Wen H, Meng S, Bousquet E, Li Y, Ge C, Jin K J, Tao Y, Guo H Z 2019 Phys. Rev. B 100 144201Google Scholar

    [47]

    刘旭, 黄昱, 毛婧一, 陈黎明 2021 70 186202Google Scholar

    Liu X, Huang Y, Mao J Y, Chen L M 2021 Acta Phys. Sin. 70 186202Google Scholar

    [48]

    Zhang Q H, He X, Shi J N, Lu N P, Li H B, Yu Q, Zhang Z, Chen L Q, Morris B, Xu Q, Yu P, Gu L, Jin K J, Nan C W 2017 Nat. Commun. 8 104Google Scholar

    [49]

    Acharya S K, Nallagatla R V, Togibasa O, Lee B W, Liu C, Jung C U, Park B H, Park J Y, Cho Y, Kim D W, Jo J, Kwon D H, Kim M, Hwang C S, Chae S C 2016 ACS Appl. Mater. Interfaces 8 7902Google Scholar

    [50]

    Tambunan T, Parwanta K J, Acharya S K, Lee B W, Jung C U, Kim Y S, Park B H, Jeong H, Park J Y, Cho M R, Park Y D, Choi W S, Kim D W, Jin H, Lee S, Song S J, Kang S J, Kim M, Hwang C S 2014 Appl. Phys. Lett. 105 063507Google Scholar

    [51]

    Li H B, Lu N P, Zhang Q H, Wang Y, Feng D, Chen T, Yang S, Duan Z, Li Z, Shi Y, Wang W, Wang W H, Jin K, Liu H, Ma J, Gu L, Nan C, Yu P 2017 Nat. Commun. 8 2156Google Scholar

    [52]

    Zhu L, Gao L, Wang L F, Xu Z, Wang J L, Li X M, Liao L, Huang T T, Huang H L, Ji A L, Lu N P, Cao Z X, Li Q, Sun J R, Yu P, Bai X D 2021 Chem. Mater. 33 3113Google Scholar

    [53]

    Lu Q Y, Yildiz B 2016 Nano Lett. 16 1186Google Scholar

    [54]

    Tian J J, Wu H J, Fan Z, Zhang Y, Pennycook S J, Zheng D F, Tan Z W, Guo H Z, Yu P, Lu X B, Zhou G F, Gao X S, Liu J M 2019 Adv. Mater. 31 1903679Google Scholar

    [55]

    Tian J J, Zhang Y, Fan Z, Wu H J, Zhao L, Rao J J, Chen Z H, Guo H Z, Lu X B, Zhou G F, Pennycook S J, Gao X S, Liu J M 2020 ACS Appl. Mater. Interfaces 12 21883Google Scholar

    [56]

    Rao J J, Fan Z, Hong L Q, Cheng S L, Huang Q C, Zhao J L, Xiang X P, Guo E J, Guo H, Hou Z P, Chen Y, Lu X B, Zhou G, Gao X S, Liu J M 2021 Mater. Today Phys. 18 100392Google Scholar

    [57]

    Chen K H, Fan Z, Rao J J, Li W J, Wang D M, Li C J, Zhong G K, Tao R Q, Tian G, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J M 2022 J. Materiomics 8 967Google Scholar

    [58]

    Lu S C, Yin F, Wang Y J, Lu N P, Gao L, Peng H N, Lyu Y J, Long Y W, Li J, Yu P 2022 Adv. Funct. Mater. 33 2210377Google Scholar

    [59]

    Cui B, Huan Y, Hu J F 2020 J. Phys. Condens. Matter 32 344001Google Scholar

  • [1] 王英, 黄慧香, 黄香林, 郭婷婷. 光电协同调控下HfOx基阻变存储器的阻变特性.  , 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [2] 史晓红, 陈京金, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成.  , 2022, 71(17): 178202. doi: 10.7498/aps.71.20220274
    [3] 张兴文, 何朝滔, 李秀林, 邱晓燕, 张耘, 陈鹏. Ni/ZnO/BiFeO3/ZnO多层膜中磁场调控的电阻开关效应.  , 2022, 71(18): 187303. doi: 10.7498/aps.71.20220609
    [4] 王志青, 姚晓萍, 沈杰, 周静, 陈文, 吴智. 锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强.  , 2021, 70(14): 146302. doi: 10.7498/aps.70.20202196
    [5] 王彦彬, 刘倩, 王勇, 代波, 魏贤华. 电极材料及偏压极性对氧化物介质击穿行为的影响及机制.  , 2021, 70(8): 087302. doi: 10.7498/aps.70.20201262
    [6] 汤卉, 唐新桂, 蒋艳平, 刘秋香, 李文华. 铌酸锶钡陶瓷中氧空位对离子电导率和弛豫现象的影响.  , 2019, 68(22): 227701. doi: 10.7498/aps.68.20190562
    [7] 王泽普, 付念, 于涵, 徐晶威, 何祺, 郑树凯, 丁帮福, 闫小兵. 铟掺杂钨位增强钨酸铋氧空位光催化效率.  , 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [8] 何金云, 彭代江, 王燕舞, 龙飞, 邹正光. 具有氧空位BixWO6(1.81≤ x≤ 2.01)的第一性原理计算和光催化性能研究.  , 2018, 67(6): 066801. doi: 10.7498/aps.67.20172287
    [9] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华. 基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究.  , 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [10] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展.  , 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [11] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟.  , 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [12] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布.  , 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [13] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [14] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究.  , 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [15] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响.  , 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [16] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算.  , 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [17] 沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平. Ga掺杂对ZnO纳米结构可见光发射的抑制效应.  , 2012, 61(16): 167105. doi: 10.7498/aps.61.167105
    [18] 刘剑, 王春雷, 苏文斌, 王洪超, 张家良, 梅良模. Nb掺杂对还原性烧结的TiO2-陶瓷的晶体结构及热电性能的影响.  , 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [19] 刘妍妍, 刘发民, 石 霞, 丁 芃, 周传仓. 钙钛矿型纳米BaFeO3的制备、结构表征及铁磁性研究.  , 2008, 57(11): 7274-7278. doi: 10.7498/aps.57.7274
    [20] 姚明珍, 顾 牡. 钨酸铅晶体中与氧空位相关的色心研究.  , 2003, 52(2): 459-462. doi: 10.7498/aps.52.459
计量
  • 文章访问数:  7080
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-26
  • 修回日期:  2023-03-20
  • 上网日期:  2023-03-23
  • 刊出日期:  2023-05-05

/

返回文章
返回
Baidu
map