搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AD95陶瓷的层裂强度及冲击压缩损伤机理研究

孙占峰 贺红亮 李平 李庆忠

引用本文:
Citation:

AD95陶瓷的层裂强度及冲击压缩损伤机理研究

孙占峰, 贺红亮, 李平, 李庆忠

The spall strength and shock compressive damage of AD95 ceramics

Sun Zhan-Feng, He Hong-Liang, Li Ping, Li Qing-Zhong
PDF
导出引用
  • 采用激光位移干涉测试技术测量了AD95 陶瓷在一维应变冲击压缩下的自由面或样品/窗口界面粒子速度剖面, 确定了层裂强度及其与加载应力的变化关系, 在此基础上讨论了冲击压缩损伤程度与加载应力的关系. 研究结果表明: AD95陶瓷发生冲击压缩损伤的阈值应力约为3.7 GPa, 小于其雨贡纽弹性极限(HEL, 约5.47 GPa); 小于阈值应力不发生冲击压缩损伤, 层裂强度随加载应力的增加逐渐增大; 大于阈值应力冲击压缩损伤快速发展, 层裂强度迅速降低; 在HEL附近层裂强度降低到零, 丧失了抗拉能力, 表明材料发生了严重的冲击压缩损伤.
    The relationship between spall strength and impact stress of AD95 ceramics which is in a one-dimensional strain state is determined by velocity profile measurement of the free surface or the sample/window interface. All fiber displacement interferometer system for any reflector is used in velocity measurement. Further the relationship between shock compressive damage degree and impact stress is discussed. The results indicate that the stress threshold of AD95 ceramics against shock compressive damage is about 3.7 GPa, which is less than its Hugoniot Elastic Limit (HEL, about 5.47 GPa). When impact stress is less than the threshold, no compressive damage occurs, and the spall strength increases with impact stress gradually. When impact stress is greater than the threshold, shock compressive damage occurs and develops rapidly which leads to the decrease of the spall strength with impact stress. The spall strength falls to zero when the impact stress increases up to about the HEL, which indicates that the material has lost the ability to resist the tensile stress and severe shock compressive damage has happened.
    • 基金项目: 国家自然科学基金重点项目(批准号: 10632080)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No.10632080).
    [1]

    Grady D E 1998 Mechanics of Materials 29 181

    [2]

    Brace W F, Paulding Jr B W, Scholz C 1966 J. Geophys. Res. 71 3939

    [3]

    Bar-on E, Partom Y, Rubin M B, Yankelevsky D J 2002 Int. J. Impact Engng. 27 509

    [4]

    Bar-on E, Partom Y, Rubin M B, Yankelevsky D J 2002 Shock Compression of Condensed Matter (edited by Furnish M D, Thadhani N N et al AIP, Georgia, 2001) p739

    [5]

    Bar-on E 2007Shock Compression of Condensed Matter(edited by Elert M, Furnish M D et al AIP, Hawaii, 2007) p223

    [6]

    Bourne N K, Millett J, Rosenberg Z 1998 J. Mech. Phys. Solids 46 1887

    [7]

    Liu Z F, Chang J Z, Yao G W 2006 Applied Mathematics and Mechanics 38 626 (in Chinese)[刘占芳, 常敬臻, 姚国文2006力学学报38 626]

    [8]

    Chen D P, He H L, Li M F, Jing F Q 2007 Acta Phys. Sin. 56 423 (in Chinese)[陈登平, 贺红亮, 黎明发, 经福谦2007 56 423]

    [9]

    Grady D E, Moody R L 1996 Sandia Report SAND96-0551, UC- 704

    [10]

    Rosenberg Z 1991 Shock Compression of Condensed Matter (edited by Schmidt S C, Dick R D et al Elsevier Science, NewYork, 1991) 439

    [11]

    Bourne N K, Millett J, Chen M W 2007Shock Compression of Condensed Matter (edited by Elert M, Furnish M D et al AIP, Hawaii, 2007) 739

    [12]

    Chen M W, McCauley J W, Dandekar D P, Bourne N K 2006 Nature Materials 5 614

    [13]

    Qi M L, He H L, Yan S L 2007 Acta Phys. Sin. 56 5965(in Chinese)[祁美兰, 贺红亮, 晏石林2007 56 5965]

    [14]

    Cagnoux J, Longy F 1988 J. Phys. 40 3

    [15]

    Dandekar D P, Bartkowski P 1994 High Pressure Science and Technology (edited by Schmidt S C, Shaner J W et al AIP, NewYork, 1993) 733

    [16]

    Bourne N K 2001 Proc. R. Soc. A 457 2189

    [17]

    Longy F, Cagnoux J 1989 J. Am. Ceram. Soc. 72 971

    [18]

    Staehler J M, Predebon W W, Pletka B J 1994 High Pressure Science and Technology (edited by Schmidt S C, Shaner J W et al AIP, NewYork, 1993) 745

    [19]

    Gust W H, Holt A C, Royce E B 1973 J. Appl. Phys. 44 550

    [20]

    Bless S J, Yaziv D, Rosenberg Z 1986 Shock Waves in Condensed Matter (edited by Gupta Y M Plenum, New York, 1985) 419

    [21]

    Murray N H, Bourne N K, Rosenberg Z, Field J E 1998 J. Appl. Phys. 84 734

    [22]

    Rosenberg Z, Yeshurun Y 1985 J. Appl. Phys. 58 3077

    [23]

    Yaziv D, Bless S J, Rosenberg Z 1986 Shock Waves in Condensed Matter (edited by Gupta Y M Plenum, New York, 1985) 425

    [24]

    Grady D E, Kipp M E 1993 High-pressure Shock Compression of Solids (edited by Asay J R, Shahinpoor M, New York: Springer- Verlag New York Inc.) 265

    [25]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley·Los Angeles·London: University of California Press) p57, 166, 446

    [26]

    Xia M F, Han W S, Ke F J, Bai Y L 1995 Advances in Mechanics 25 1 (in Chinese)[厦蒙棼, 韩闻生, 柯孚久, 白以龙1995力学进展 25 1]

    [27]

    Xia M F, Han W S, Ke F J, Bai Y L 1995 Advances in Mechanics 25 145 (in Chinese)[厦蒙棼, 韩闻生, 柯孚久, 白以龙1995力学进展25 145]

  • [1]

    Grady D E 1998 Mechanics of Materials 29 181

    [2]

    Brace W F, Paulding Jr B W, Scholz C 1966 J. Geophys. Res. 71 3939

    [3]

    Bar-on E, Partom Y, Rubin M B, Yankelevsky D J 2002 Int. J. Impact Engng. 27 509

    [4]

    Bar-on E, Partom Y, Rubin M B, Yankelevsky D J 2002 Shock Compression of Condensed Matter (edited by Furnish M D, Thadhani N N et al AIP, Georgia, 2001) p739

    [5]

    Bar-on E 2007Shock Compression of Condensed Matter(edited by Elert M, Furnish M D et al AIP, Hawaii, 2007) p223

    [6]

    Bourne N K, Millett J, Rosenberg Z 1998 J. Mech. Phys. Solids 46 1887

    [7]

    Liu Z F, Chang J Z, Yao G W 2006 Applied Mathematics and Mechanics 38 626 (in Chinese)[刘占芳, 常敬臻, 姚国文2006力学学报38 626]

    [8]

    Chen D P, He H L, Li M F, Jing F Q 2007 Acta Phys. Sin. 56 423 (in Chinese)[陈登平, 贺红亮, 黎明发, 经福谦2007 56 423]

    [9]

    Grady D E, Moody R L 1996 Sandia Report SAND96-0551, UC- 704

    [10]

    Rosenberg Z 1991 Shock Compression of Condensed Matter (edited by Schmidt S C, Dick R D et al Elsevier Science, NewYork, 1991) 439

    [11]

    Bourne N K, Millett J, Chen M W 2007Shock Compression of Condensed Matter (edited by Elert M, Furnish M D et al AIP, Hawaii, 2007) 739

    [12]

    Chen M W, McCauley J W, Dandekar D P, Bourne N K 2006 Nature Materials 5 614

    [13]

    Qi M L, He H L, Yan S L 2007 Acta Phys. Sin. 56 5965(in Chinese)[祁美兰, 贺红亮, 晏石林2007 56 5965]

    [14]

    Cagnoux J, Longy F 1988 J. Phys. 40 3

    [15]

    Dandekar D P, Bartkowski P 1994 High Pressure Science and Technology (edited by Schmidt S C, Shaner J W et al AIP, NewYork, 1993) 733

    [16]

    Bourne N K 2001 Proc. R. Soc. A 457 2189

    [17]

    Longy F, Cagnoux J 1989 J. Am. Ceram. Soc. 72 971

    [18]

    Staehler J M, Predebon W W, Pletka B J 1994 High Pressure Science and Technology (edited by Schmidt S C, Shaner J W et al AIP, NewYork, 1993) 745

    [19]

    Gust W H, Holt A C, Royce E B 1973 J. Appl. Phys. 44 550

    [20]

    Bless S J, Yaziv D, Rosenberg Z 1986 Shock Waves in Condensed Matter (edited by Gupta Y M Plenum, New York, 1985) 419

    [21]

    Murray N H, Bourne N K, Rosenberg Z, Field J E 1998 J. Appl. Phys. 84 734

    [22]

    Rosenberg Z, Yeshurun Y 1985 J. Appl. Phys. 58 3077

    [23]

    Yaziv D, Bless S J, Rosenberg Z 1986 Shock Waves in Condensed Matter (edited by Gupta Y M Plenum, New York, 1985) 425

    [24]

    Grady D E, Kipp M E 1993 High-pressure Shock Compression of Solids (edited by Asay J R, Shahinpoor M, New York: Springer- Verlag New York Inc.) 265

    [25]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley·Los Angeles·London: University of California Press) p57, 166, 446

    [26]

    Xia M F, Han W S, Ke F J, Bai Y L 1995 Advances in Mechanics 25 1 (in Chinese)[厦蒙棼, 韩闻生, 柯孚久, 白以龙1995力学进展 25 1]

    [27]

    Xia M F, Han W S, Ke F J, Bai Y L 1995 Advances in Mechanics 25 145 (in Chinese)[厦蒙棼, 韩闻生, 柯孚久, 白以龙1995力学进展25 145]

  • [1] 孟祥琛, 王丹, 蔡亚辉, 叶振, 贺永宁, 徐亚男. 氧化铝表面二次电子发射抑制及其在微放电抑制中的应用.  , 2023, 72(10): 107901. doi: 10.7498/aps.72.20222404
    [2] 谈松林, 庄永起, 易健宏. 溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究.  , 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [3] 张凤国, 赵福祺, 刘军, 何安民, 王裴. 延性金属层裂强度对温度、晶粒尺寸和加载应变率的依赖特性及其物理建模.  , 2022, 71(3): 034601. doi: 10.7498/aps.71.20210702
    [4] 张凤国. 延性金属层裂强度对温度、晶粒尺寸和加载应变率的依赖特性及其物理建模.  , 2021, (): . doi: 10.7498/aps.70.20210702
    [5] 陈诚, 卢建安, 杜微, 王伟, 毛翔宇, 陈小兵. Nd含量对Bi6−xNdxFe1.4Ni0.6Ti3O18多晶材料多铁性的影响.  , 2019, 68(3): 037701. doi: 10.7498/aps.68.20181287
    [6] 李琦, 章勇. 基于Al2O3/MoO3复合阳极缓冲层的倒置聚合物太阳能电池的研究.  , 2018, 67(6): 067201. doi: 10.7498/aps.67.20172311
    [7] 冯晓伟, 李俊承, 王洪波, 常敬臻. 平板冲击下氧化铝陶瓷弹性前驱波衰减的细观机理.  , 2016, 65(16): 166201. doi: 10.7498/aps.65.166201
    [8] 毛翔宇, 邹保文, 孙慧, 陈春燕, 陈小兵. Co含量对Bi6Fe2-xCoxTi3O18样品多铁性的影响.  , 2015, 64(21): 217701. doi: 10.7498/aps.64.217701
    [9] 熊瑛, 文岐业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰. 硅基二氧化钒相变薄膜电学特性研究.  , 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [10] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟.  , 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [11] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华. Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应.  , 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [12] 何悦, 窦亚楠, 马晓光, 陈绍斌, 褚君浩. 热原子层沉积氧化铝对硅的钝化性能及热稳定性.  , 2012, 61(24): 248102. doi: 10.7498/aps.61.248102
    [13] 伍君博, 唐新桂, 贾振华, 陈东阁, 蒋艳平, 刘秋香. 钇和镧掺杂氧化铝陶瓷的热导及其介电弛豫特性研究.  , 2012, 61(20): 207702. doi: 10.7498/aps.61.207702
    [14] 吴利华, 章晓中, 于奕, 万蔡华, 谭新玉. a-C: Fe/AlOx/Si基异质结的光伏效应.  , 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [15] 秦杰明, 张莹, 曹建明, 田立飞, 董中伟, 李岳. 高压下制备的透明低阻n-ZnO陶瓷的表征.  , 2011, 60(3): 036105. doi: 10.7498/aps.60.036105
    [16] 王军转, 石卓琼, 娄昊楠, 章新栾, 左则文, 濮林, 马恩, 张荣, 郑有炓, 陆昉, 施毅. 掺铒Si/Al2O3多层结构中结晶形态对1.54 μm发光的影响.  , 2009, 58(6): 4243-4248. doi: 10.7498/aps.58.4243
    [17] 廖国进, 闫绍峰, 巴德纯. 铈掺杂氧化铝薄膜的蓝紫色发光特性.  , 2008, 57(11): 7327-7332. doi: 10.7498/aps.57.7327
    [18] 王永刚, 陈登平, 贺红亮, 王礼立, 经福谦. 冲击加载下LY12铝合金的动态屈服强度和层裂强度与温度的相关性.  , 2006, 55(8): 4202-4207. doi: 10.7498/aps.55.4202
    [19] 曾智江, 杨秋红, 徐 军. Cr3+:Al2O3透明多晶陶瓷光谱特性分析.  , 2005, 54(11): 5445-5449. doi: 10.7498/aps.54.5445
    [20] 李晓溪, 贾天卿, 冯东海, 徐至展. 超短脉冲激光照射下氧化铝的烧蚀机理.  , 2004, 53(7): 2154-2158. doi: 10.7498/aps.53.2154
计量
  • 文章访问数:  8695
  • PDF下载量:  977
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-12
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

/

返回文章
返回
Baidu
map