搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

30 keV H+在聚碳酸酯微孔膜中动态输运过程的实验和理论研究

牛书通 潘鹏 朱炳辉 宋涵宇 金屹磊 禹楼飞 韩承志 邵剑雄 陈熙萌

引用本文:
Citation:

30 keV H+在聚碳酸酯微孔膜中动态输运过程的实验和理论研究

牛书通, 潘鹏, 朱炳辉, 宋涵宇, 金屹磊, 禹楼飞, 韩承志, 邵剑雄, 陈熙萌

Experimental and theoritical research on the dynamical transmission of 30 keV H+ ions through polycarbonate nanocapillaries

Niu Shu-Tong, Pan Peng, Zhu Bing-Hui, Song Han-Yu, Jin Yi-Lei, Yu Lou-Fei, Han Cheng-Zhi, Shao Jian-Xiong, Chen Xi-Meng
PDF
导出引用
  • 测量了30 keV的H+入射倾斜角度为-1和-2的聚碳酸酯微孔膜后,出射粒子二维分布图、角度分布、相对穿透率以及出射H+电荷态纯度随沉积电荷的演化.实验中30 keV的H+在微孔膜中输运特性与之前其他能区离子在微孔膜中输运特性有显著不同,实验中直接观测到出射粒子导向部分和散射部分的动态演化过程,出射的H+由沿微孔孔轴方向的导向H+和沿入射束流方向的散射H+两部分组成,随着微孔内电荷斑的沉积,出射的导向H+的占比不断减小,出射散射H+占比不断增加;出射H0占总出射粒子的比例不断减小,其中心方向逐步向入射束流方向偏转.微孔膜处于不同倾斜角度时,微孔内沉积电荷斑的位置和电场强度是不同的.同时模拟计算了入射H+在微孔内部的运动轨迹、微孔内部电荷斑电势和场强分布,实验结果和理论结果得到了很好的验证.对出射离子导向部分和散射部分的动态演化过程的观测和理论解释,使得对中能区离子在微孔膜中输运机制有更好的认识.
    The ions with different incident energies transmitting through insulating nanocapillaries are studied in various configurations. For the low energy ions transmitting through nanocapillaries, Stolterfoht et al.[2002 Phys. Rev. Lett. 88 133201] have observed the guiding effect. Subsequent studies revealed that the self-organizing charge patches on the capillary wall inhibit charge exchange and the ions are transmitted along the capillary axis direction. The high energies of ions transmitting through nanocapillaries are measured, the main transmission mechanism is multiple random inelastic collisions below the surface, and the charge patches will not affect the transmitted ions trajectories. The transmission features of the intermediate energy ions are different from those of the low and high energy ions. The ion beams with intermediate energies have many applications, so it is necessary to understand the transmission features of the intermediate energy ions though nanocapillaries. Recent studies have focused on the transmission of the intermediate energies ions through the nanocapillaries. In the present work, we investigate thie transmission features, such as the two-dimensional transmitted angular distributions, the charge states and position distributions, and the evolution of the relative transmission rate and the charge purity of 30 keV H+ transmitting through nanocapillaries in a polycarbonate membrane at the angles of-1 and-2. The experimental data clearly show that the transmitted H+ ions consist of the transmitted scattering H+ ions, which are located around the direction of the incident beam, and the transmitted guiding H+ ions, which are located around the direction of the capillary axis. With the charges depositing in the capillary, the proportion of the transmitted scattering H+ ions increases and the proportion of the transmitted guiding H+ ion decreases, which directly demonstrates the dynamical evolution of the scattering ions and the guiding ions. To understand the competition between the transmitted scattering ions and the transmitted guiding ions and the physical picture of the intermediate energy ions transmitting through the insulating nanocapillaries, the trajectories of the H+ ions in the capillary and the potential distribution and electric field intensity distribution in the capillary are numerically simulated. The results show that the potential distributions and electric field intensitiesy are different for H+ ions transmitting through nanocapillaries at various tilt angles, and the simulation results are in good agreement with the experimental data. The experimental and simulation results give us a further insight into the mechanisms of guiding and scattering in intermediate energy ions transmitting through nanocapillaries.
    [1]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509

    [2]

    Martin C R 1994 Science 266 1961

    [3]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502

    [4]

    Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902

    [5]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [6]

    Schiessl K, Tksi K, Solleder B, Lemell C, Burgdrfer J 2009 Phys. Rev. Lett. 102 163201

    [7]

    Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901

    [8]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [9]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712

    [10]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhsz Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901

    [11]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [12]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901

    [13]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelivre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H, Bundaleski N, Roncin P 2009 Nucl. Instrum. Meth. B 267 674

    [14]

    Juhsz Z, Sulik B, Rcz R, Biri S, J Bereczky R, Tksi K, Kvr , Plinks J, Stolterfoht N 2010 Phys. Rev. A 82 062903

    [15]

    Lemell C, Burgdrfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237

    [16]

    Simon M J, Zhou C L, Dbeli M, Cassimi A, Monnet I, Mry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Meth. B 330 11

    [17]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese)[周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 65 103401]

    [18]

    Zhu B H, Yang A X, Niu S T, Chen X M, Zhou W, Shao J X 2018 Acta Phys. Sin. 67 013401 (in Chinese)[朱炳辉, 杨爱香, 牛书通, 陈熙萌, 周旺, 邵剑雄 2018 67 013401]

    [19]

    Mo D 2009 Ph. D. Dissertation (Lanzhou: Institute of Moden Physics, Chinese Academy of Sciences) (in Chinese)[莫丹 2009 博士学位论文 (兰州: 中国科学院近代物理研究所)]

    [20]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [21]

    Schiessl K, Palfinger W, Lemell C, Burgdrfer J 2005 Nucl. Instrum. Meth. B 232 228

    [22]

    Stolterfoht N, Hellhammer R, Sulik B, Juhsz Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901

    [23]

    Yang F J 2008 Atom Physics (Beijing: Higher Education Press) p95 (in Chinese)[杨福家 2008 原子物理学 (北京: 高等教育出版社) 第95页]

  • [1]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509

    [2]

    Martin C R 1994 Science 266 1961

    [3]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502

    [4]

    Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902

    [5]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [6]

    Schiessl K, Tksi K, Solleder B, Lemell C, Burgdrfer J 2009 Phys. Rev. Lett. 102 163201

    [7]

    Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901

    [8]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [9]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712

    [10]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhsz Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901

    [11]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [12]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901

    [13]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelivre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H, Bundaleski N, Roncin P 2009 Nucl. Instrum. Meth. B 267 674

    [14]

    Juhsz Z, Sulik B, Rcz R, Biri S, J Bereczky R, Tksi K, Kvr , Plinks J, Stolterfoht N 2010 Phys. Rev. A 82 062903

    [15]

    Lemell C, Burgdrfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237

    [16]

    Simon M J, Zhou C L, Dbeli M, Cassimi A, Monnet I, Mry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Meth. B 330 11

    [17]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese)[周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 65 103401]

    [18]

    Zhu B H, Yang A X, Niu S T, Chen X M, Zhou W, Shao J X 2018 Acta Phys. Sin. 67 013401 (in Chinese)[朱炳辉, 杨爱香, 牛书通, 陈熙萌, 周旺, 邵剑雄 2018 67 013401]

    [19]

    Mo D 2009 Ph. D. Dissertation (Lanzhou: Institute of Moden Physics, Chinese Academy of Sciences) (in Chinese)[莫丹 2009 博士学位论文 (兰州: 中国科学院近代物理研究所)]

    [20]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [21]

    Schiessl K, Palfinger W, Lemell C, Burgdrfer J 2005 Nucl. Instrum. Meth. B 232 228

    [22]

    Stolterfoht N, Hellhammer R, Sulik B, Juhsz Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901

    [23]

    Yang F J 2008 Atom Physics (Beijing: Higher Education Press) p95 (in Chinese)[杨福家 2008 原子物理学 (北京: 高等教育出版社) 第95页]

  • [1] 牛书通, 詹欣, 华强, 李文腾, 周利华, 杨廷贵. 16 keV C离子在锥形玻璃管中的输运过程.  , 2024, 73(5): 053401. doi: 10.7498/aps.73.20231513
    [2] 王丹, 邱荣, 陈博, 包南云, 康冬冬, 戴佳钰. 二维冰相I的电子和光学性质.  , 2021, 70(13): 133101. doi: 10.7498/aps.70.20210708
    [3] 胡钧, 高嶷. 界面水与催化.  , 2019, 68(1): 016803. doi: 10.7498/aps.68.20182180
    [4] 刘诗序, 陈文思, 池其源, 严海. 弹性需求下的网络交通流逐日动态演化.  , 2017, 66(6): 060501. doi: 10.7498/aps.66.060501
    [5] 李涛, 关宏志, 梁科科. 有限理性视野下网络交通流逐日演化规律研究.  , 2016, 65(15): 150502. doi: 10.7498/aps.65.150502
    [6] 陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍. B/N掺杂类直三角石墨烯纳米带器件引起的整流效应.  , 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [7] 何昱辰, 刘向军. 基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究.  , 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [8] 晏潜, 陆翠敏, 冯电稳, 杨巍巍, 赵捷, 刘庆锁, 马永昌. K0.8Fe2Se2晶体c轴向载流子输运特性的研究.  , 2014, 63(3): 037401. doi: 10.7498/aps.63.037401
    [9] 赵省贵, 金克新, 罗炳成, 王建元, 陈长乐. Gd0.55Sr0.45MnO3薄膜光诱导电阻变化特性研究.  , 2012, 61(4): 047501. doi: 10.7498/aps.61.047501
    [10] 王淑芳, 陈珊珊, 陈景春, 闫国英, 乔小齐, 刘富强, 王江龙, 丁学成, 傅广生. 脉冲激光沉积温度及氧压对Bi2Sr2Co2Oy热电薄膜晶体结构与电输运性能的影响.  , 2012, 61(6): 066804. doi: 10.7498/aps.61.066804
    [11] 刘诗序, 关宏志, 严海. 网络交通流动态演化的混沌现象及其控制.  , 2012, 61(9): 090506. doi: 10.7498/aps.61.090506
    [12] 邱明, 张振华, 邓小清. 碳链输运对基团吸附的敏感性分析.  , 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [13] 李桂琴. 硼-碳和硼-氮量子点器件的输运特性研究.  , 2010, 59(7): 4985-4988. doi: 10.7498/aps.59.4985
    [14] 胡海龙, 张 琨, 王振兴, 孔 涛, 胡 颖, 王晓平. 硫醇自组装分子膜末端基团对其电荷输运特性的影响.  , 2007, 56(3): 1674-1679. doi: 10.7498/aps.56.1674
    [15] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究.  , 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [16] 王建元, 陈长乐, 高国棉, 韩立安, 金克新. La0.82Te0.18MnO3薄膜的输运特性和光诱导效应.  , 2006, 55(12): 6617-6621. doi: 10.7498/aps.55.6617
    [17] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究.  , 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [18] 陈 钦, 李统藏, 石勤伟, 王晓平. 开口悬挂端对单壁碳纳米管电子输运特性的影响.  , 2005, 54(8): 3962-3966. doi: 10.7498/aps.54.3962
    [19] 肖春涛, 韩立安, 薛德胜, 赵俊慧, H.Kunkel, G.Williams. La0.67Pb0.33MnO3的磁性及输运特性.  , 2003, 52(5): 1245-1249. doi: 10.7498/aps.52.1245
    [20] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性.  , 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
计量
  • 文章访问数:  5167
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-30
  • 修回日期:  2018-07-27
  • 刊出日期:  2019-10-20

/

返回文章
返回
Baidu
map