-
利用倾斜光纤光栅在发生弯曲时其存在的多种纤芯-包层模式耦合方式容易发生改变, 进而使其光谱特征发生明显变化的特点, 提出并验证了一种基于大角度倾斜光纤光栅包层模的低频声传感方案. 将倾斜光纤光栅与设计的聚对苯二甲酸乙二酯(PET)换能膜片及腔体结构相结合, 得到了一种有效的低频声传感系统. 该换能膜片在被测声波信号作用下产生振动, 使固定在膜片表面的倾斜光纤光栅发生周期性动态弯曲, 引起倾斜光纤光栅的包层模式光谱发生周期性漂移, 最后采用边缘滤波法进行解调, 实现低频被测声波的有效探测. 实验结果显示, 该传感方案可以在45—220 Hz范围内实现高灵敏度声波探测, 在传感系统固有频率附近54 Hz处获得最大声灵敏度115.88 mV/Pa, 且最小探测声压为539.2 μPa/Hz1/2. 该传感方案具有灵敏度高、重复性好、结构简单、容易加工等优势, 在低频声探测等相关应用领域具有较大的发展前景.A novel low frequency acoustic sensor based on the cladding mode of large-angle tilted fiber Bragg grating (TFBG) is proposed and verified in this work. It mainly uses the characteristic that the coupling mode of the core and cladding mode in TFBG is easy to change when the TFBG experiences micro-bend, which will finally causes a dramatic drift in the spectrum. By combining a large-angle TFBG with the designed polyethylene terephthalate (PET) transducer diaphragm and cavity structure, an effective low-frequency acoustic sensing system is obtained in this work. Under the action of applied acoustic wave, the transducer membrane will have periodic vibrations, which will makes the fixed TFBG dynamically bend, directly leading to a wavelength shift of the cladding mode spectrum. The experimental results show that the sensing system can achieve high-sensitivity acoustic detection in a frequency range of 45–220 Hz, and a maximum acoustic pressure sensitivity of 115.88 mV/Pa at 54 Hz. Moreover, the minimum detection sound pressure can achieve 539.2 μPa/Hz1/2@54 Hz. Therefore, the sensor has the advantages of high sensitivity, good repeatability, simple structure, easy processing, etc. It has a great development prospect in the low-frequency acoustic detection related application fields.
-
Keywords:
- fiber optic acoustic sensing /
- tilted fiber Bragg grating /
- mode coupling /
- dynamic bending
[1] Mydlarz C, Salamon J, Bello J P 2017 Appl. Acoust. 117 207Google Scholar
[2] Duan S C, Wang W D, Zhang S, Yang X, Zhang Y, Zhang G J 2021 IEEE Access 9 27122Google Scholar
[3] Grangeon J, Lesage P 2019 J. Volcanol. Geotherm. Res. 387 106668Google Scholar
[4] Zhu W H, Li D Y, Liu J J, Wang R H 2020 App. Opt. 59 1775Google Scholar
[5] Jia J S, Jiang Y, Zhang L C, Gao H C, Jiang L 2019 IEEE Sens. J. 19 7988Google Scholar
[6] Jiang J, Wang K, Wu X R, Ma G M, Zhang C H 2020 Plasma Sci. Technol. 22 024002Google Scholar
[7] 刘欣, 蔡宸, 董志飞, 邓欣, 胡昕宇, 祁志美 2022 71 094301Google Scholar
Liu X, Cai C, Dong Z F, Deng X, Hu X Y, Qi Z M 2022 Acta Phys. Sin. 71 094301Google Scholar
[8] Wang S, Lu P, Liu L, Liao H, et al. 2016 IEEE Photonics Technol. Lett. 28 1264Google Scholar
[9] Dass S, Chatterjee K, Kachhap S, Jha R 2021 J. Lightwave Technol. 39 3974Google Scholar
[10] Chaganti L, Ahmad M H, Piah M A M, Noor M Y M, Azmi A I 2020 IEEE Access 8 188044Google Scholar
[11] Dass S, Jha R 2017 J. Lightwave Technol. 35 5411Google Scholar
[12] Luo C, Lu P, Fu X, Chen J, Wang S, Zhang C, Liu D M, Zhang J S 2016 Photonic Netw. Commun. 32 224Google Scholar
[13] Fu X, Lu P, Ni W J, Liu L, Liao H, Liu D M, Zhang J S 2016 IEEE Photonics J. 8 6805713Google Scholar
[14] Lu P, Liu D M, Liao H 2016 Conference on Advanced Sensor Systems and Applications VII Beijing, China, October 12–14, 2016 p202
[15] Guo T A, Liu F, Guan B O, Albert J 2016 Opt. Laser Technol. 78 19Google Scholar
[16] Hayber S E, Aydemir U, Tabaru T E, Saracoglu O G 2019 IEEE Sens. J. 19 5680Google Scholar
[17] Guo M, Chen K, Zhang G Y, Li C X, Zhao X Y, Gong Z F, Yu Q X 2022 J. Lightwave Technol. 40 4481Google Scholar
[18] Kipriksiz S E, Yucel M 2021 Opt. Quantum Electron. 53 6Google Scholar
[19] Yang S T, Wang H Y, Yuan T T, Zhang X T, Yuan L B 2022 J. Lightwave Technol. 40 6030Google Scholar
[20] Zhu F X, Zhang Y D, Qu Y C, Jiang W G, Su H Y, Guo Y, Qi K Y 2020 Opt. Fiber Technol. 54 102133Google Scholar
[21] Monteiro C S, Ferreira M S, Silva S O, Kobelke J, Schuster K, Bierlich J, Frazao O 2016 Photonic Sens. 6 339Google Scholar
[22] Wei Y, Liu C B, Liu C L, et al. 2022 IEEE Sens. J. 22 21719Google Scholar
[23] Zhan P, Huang Y L 2020 International Conference on Optoelectronic and Microelectronic Technology and Application Nanjing, China, October 20–22, 2020 p827
[24] Wu S N, Wang L, Chen X L, Zhou B 2018 J. Lightwave Technol. 36 2216Google Scholar
[25] Huang Q Q, Deng S, Li M, et al. 2020 Opt. Eng. 59 064105
[26] Yao Q K, Guo X, Xie L F, et al. 2021 Materials 14 7605Google Scholar
-
表 1 光纤弯曲性能比较
Table 1. Comparison of fiber bending property.
表 2 光纤声传感方案的性能比较
Table 2. Performance comparison of fiber optical acoustic sensing system.
-
[1] Mydlarz C, Salamon J, Bello J P 2017 Appl. Acoust. 117 207Google Scholar
[2] Duan S C, Wang W D, Zhang S, Yang X, Zhang Y, Zhang G J 2021 IEEE Access 9 27122Google Scholar
[3] Grangeon J, Lesage P 2019 J. Volcanol. Geotherm. Res. 387 106668Google Scholar
[4] Zhu W H, Li D Y, Liu J J, Wang R H 2020 App. Opt. 59 1775Google Scholar
[5] Jia J S, Jiang Y, Zhang L C, Gao H C, Jiang L 2019 IEEE Sens. J. 19 7988Google Scholar
[6] Jiang J, Wang K, Wu X R, Ma G M, Zhang C H 2020 Plasma Sci. Technol. 22 024002Google Scholar
[7] 刘欣, 蔡宸, 董志飞, 邓欣, 胡昕宇, 祁志美 2022 71 094301Google Scholar
Liu X, Cai C, Dong Z F, Deng X, Hu X Y, Qi Z M 2022 Acta Phys. Sin. 71 094301Google Scholar
[8] Wang S, Lu P, Liu L, Liao H, et al. 2016 IEEE Photonics Technol. Lett. 28 1264Google Scholar
[9] Dass S, Chatterjee K, Kachhap S, Jha R 2021 J. Lightwave Technol. 39 3974Google Scholar
[10] Chaganti L, Ahmad M H, Piah M A M, Noor M Y M, Azmi A I 2020 IEEE Access 8 188044Google Scholar
[11] Dass S, Jha R 2017 J. Lightwave Technol. 35 5411Google Scholar
[12] Luo C, Lu P, Fu X, Chen J, Wang S, Zhang C, Liu D M, Zhang J S 2016 Photonic Netw. Commun. 32 224Google Scholar
[13] Fu X, Lu P, Ni W J, Liu L, Liao H, Liu D M, Zhang J S 2016 IEEE Photonics J. 8 6805713Google Scholar
[14] Lu P, Liu D M, Liao H 2016 Conference on Advanced Sensor Systems and Applications VII Beijing, China, October 12–14, 2016 p202
[15] Guo T A, Liu F, Guan B O, Albert J 2016 Opt. Laser Technol. 78 19Google Scholar
[16] Hayber S E, Aydemir U, Tabaru T E, Saracoglu O G 2019 IEEE Sens. J. 19 5680Google Scholar
[17] Guo M, Chen K, Zhang G Y, Li C X, Zhao X Y, Gong Z F, Yu Q X 2022 J. Lightwave Technol. 40 4481Google Scholar
[18] Kipriksiz S E, Yucel M 2021 Opt. Quantum Electron. 53 6Google Scholar
[19] Yang S T, Wang H Y, Yuan T T, Zhang X T, Yuan L B 2022 J. Lightwave Technol. 40 6030Google Scholar
[20] Zhu F X, Zhang Y D, Qu Y C, Jiang W G, Su H Y, Guo Y, Qi K Y 2020 Opt. Fiber Technol. 54 102133Google Scholar
[21] Monteiro C S, Ferreira M S, Silva S O, Kobelke J, Schuster K, Bierlich J, Frazao O 2016 Photonic Sens. 6 339Google Scholar
[22] Wei Y, Liu C B, Liu C L, et al. 2022 IEEE Sens. J. 22 21719Google Scholar
[23] Zhan P, Huang Y L 2020 International Conference on Optoelectronic and Microelectronic Technology and Application Nanjing, China, October 20–22, 2020 p827
[24] Wu S N, Wang L, Chen X L, Zhou B 2018 J. Lightwave Technol. 36 2216Google Scholar
[25] Huang Q Q, Deng S, Li M, et al. 2020 Opt. Eng. 59 064105
[26] Yao Q K, Guo X, Xie L F, et al. 2021 Materials 14 7605Google Scholar
计量
- 文章访问数: 3607
- PDF下载量: 81
- 被引次数: 0