-
采用高速摄像仪以10000帧/s 的拍摄速度对液滴撞击倾斜表面液膜的过程进行了实验观测, 分析了液滴撞击倾斜表面液膜后的铺展、水花形成以及飞溅等现象, 考察了撞击角对液滴震荡变形过程的影响; 在此基础上, 定量讨论了液滴铺展速度随时间的变化规律, 揭示了液滴撞击速度和撞击角对前、后铺展因子及初始铺展速度的影响.观测发现, 在撞击角为28.0°–74.7°范围内, 随着撞击角的减小, 液滴在液膜表面的震荡变形程度增大; 前铺展因子随撞击速度的增大而增大, 随撞击角的减小而增大; 后铺展因子随撞击速度的增大几乎不发生变化, 但是随撞击角的增大而增大; 液滴初始铺展速度随撞击速度和撞击角的升高而增大.The phenomena of droplet impact on an inclined solid surface covered with a pre-existing liquid film are observed using high speed camera at 10000 frames per second. The processes of droplet spreading, liquid sheet formation, splashing and droplet oscillation are observed and analyzed. From the results the relationship between spreading velocity and time is discussed quantitatively. Besides, the effects of impact velocity and impact angle on front and back spreading factors and initiatory spreading velocity are also revealed. At the impact angles ranging from 28.0° to 74.7°, it is found that with the decrease of impact angle, the deformation degree of the droplet oscillation on the film surface increases. The results also indicate that the front spreading factor can increases by increasing impact velocity or by reducing the impact angle, whereas the back spreading factor increases with impact angle increasing. The impact velocity almost has no influence on it. The initial spreading velocity can increase by increasing the impact velocity and the impact angle.
-
Keywords:
- drop impact /
- inclined liquid film /
- spreading factor /
- spreading velocity
[1] Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥 2012 61 184702]
[2] Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 61 054701]
[3] Sun Z H, Han R J 2008 Chin. Phys. B 17 3185
[4] Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159
[5] Cossali G E, Coghe A, Marengo M 1997 Exp. Fluids 22 463
[6] Vander Wal R, Berger G, Mozes S 2006 Exp. Fluids 40 33
[7] Motzkus C, Gensdarmes F, Géhin E 2009 J. Aerosol. Sci. 40 680
[8] Okawa T, Shiraishi T, Mori T 2006 Exp. Fluids 41 965
[9] Rioboo R, Bauthier C, Conti J, Voué M, De Coninck J 2003 Exp. Fluids 35 648
[10] Shi Z, Yan Y, Yang F, Qian Y, Hu G 2008 J. Hydrodynamics B 20 267
[11] Liang G T, Shen S Q, Yang Y 2012 J. Therm. Sci. Technol. 11 8 (in Chinese) [梁刚涛, 沈胜强, 杨勇 2012 热科学与技术 11 8]
[12] Wang A B, Chen C C 2000 Phys. Fluids 12 2155
[13] Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese) [郭加宏, 戴世强, 代钦 2010 59 2601]
[14] Šikalo Š, Tropea C, Ganić E N 2005 J. Colloid Interf. Sci. 286 661
[15] Šikalo Š, Ganić E N 2006 Exp. Therm. Fluid Sci. 31 97
[16] Lunkad S F, Buwa V V, Nigam K D P 2007 Chem. Eng. Sci. 62 7214
[17] Shen S Q, Cui Y Y, Guo Y L 2009 J. Therm. Sci. Technol. 8 194 (in Chinese) [沈胜强, 崔艳艳, 郭亚丽 2009 热科学与技术 8 194]
[18] Lu J J, Chen X L, Cao X K, Liu H F, Yu Z H 2007 Chem. React. Eng. Technol. 23 505 (in Chinese) [陆军军, 陈雪莉, 曹显奎, 刘海峰, 于遵宏 2007 化学反应工程与工艺 23 505]
[19] Rioboo R, Marengo M, Tropea C 2002 Exp. Fluids 33 112
[20] Stow C D, Hadfield M G 1981 P. Roy. Soc. A Math. Phys. Sci. 373 419
[21] Mundo C, Sommerfeld M, Tropea C 1995 Int. J. Multiphase. Flow 21 151
-
[1] Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥 2012 61 184702]
[2] Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 61 054701]
[3] Sun Z H, Han R J 2008 Chin. Phys. B 17 3185
[4] Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159
[5] Cossali G E, Coghe A, Marengo M 1997 Exp. Fluids 22 463
[6] Vander Wal R, Berger G, Mozes S 2006 Exp. Fluids 40 33
[7] Motzkus C, Gensdarmes F, Géhin E 2009 J. Aerosol. Sci. 40 680
[8] Okawa T, Shiraishi T, Mori T 2006 Exp. Fluids 41 965
[9] Rioboo R, Bauthier C, Conti J, Voué M, De Coninck J 2003 Exp. Fluids 35 648
[10] Shi Z, Yan Y, Yang F, Qian Y, Hu G 2008 J. Hydrodynamics B 20 267
[11] Liang G T, Shen S Q, Yang Y 2012 J. Therm. Sci. Technol. 11 8 (in Chinese) [梁刚涛, 沈胜强, 杨勇 2012 热科学与技术 11 8]
[12] Wang A B, Chen C C 2000 Phys. Fluids 12 2155
[13] Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese) [郭加宏, 戴世强, 代钦 2010 59 2601]
[14] Šikalo Š, Tropea C, Ganić E N 2005 J. Colloid Interf. Sci. 286 661
[15] Šikalo Š, Ganić E N 2006 Exp. Therm. Fluid Sci. 31 97
[16] Lunkad S F, Buwa V V, Nigam K D P 2007 Chem. Eng. Sci. 62 7214
[17] Shen S Q, Cui Y Y, Guo Y L 2009 J. Therm. Sci. Technol. 8 194 (in Chinese) [沈胜强, 崔艳艳, 郭亚丽 2009 热科学与技术 8 194]
[18] Lu J J, Chen X L, Cao X K, Liu H F, Yu Z H 2007 Chem. React. Eng. Technol. 23 505 (in Chinese) [陆军军, 陈雪莉, 曹显奎, 刘海峰, 于遵宏 2007 化学反应工程与工艺 23 505]
[19] Rioboo R, Marengo M, Tropea C 2002 Exp. Fluids 33 112
[20] Stow C D, Hadfield M G 1981 P. Roy. Soc. A Math. Phys. Sci. 373 419
[21] Mundo C, Sommerfeld M, Tropea C 1995 Int. J. Multiphase. Flow 21 151
计量
- 文章访问数: 7681
- PDF下载量: 1051
- 被引次数: 0