-
基于光反馈半导体激光器(SL)速率方程模型,理论仿真研究了高斯切趾型光纤布拉格光栅(GAFBG)反馈SL(GAFBGF-SL)混沌输出的延时特征(TDS)以及混沌带宽特性.结果表明:随着反馈强度的增加,GAFBGF-SL表现出由准周期进入混沌的动力学演化路径;通过合理选择GAFBG布拉格频率与SL中心频率之间的频率失谐及反馈强度,GAFBGF-SL混沌输出的TDS能得到有效抑制(低于0.02);通过进一步绘制混沌信号TDS及带宽在GAFBG布拉格频率与SL中心频率之间的频率失谐和反馈强度构成的参量空间中的分布图,确定了获取弱TDS、宽带宽光混沌信号的参数范围.
-
关键词:
- 光纤光栅外腔半导体激光器 /
- 混沌 /
- 延时特征 /
- 带宽
Optical chaos based on semiconductor laser (SL) has some vital applications such as optical chaos secure communication, high-speed physical random number generation, chaos lidar, etc. Among various schemes to drive an SL into chaos, the introduction of external cavity feedback is one of the most popular techniques, which can generate chaos signals with high dimension and complexity. For the chaos output from an external cavity feedback SL, a time-delay signature (TDS) and bandwidth are two key indexes to assess the chaos signal quality. In this work, according to the rate-equation model of an optical feedback SL, we theoretically investigate the characteristics of TDS and effective bandwidth (EWB) of chaotic output from a Gaussian apodized fiber Bragg grating (GAFBG) feedback SL (GAFBGF-SL). The results show that with the increase of feedback strength, the GAFBGF-SL experiences a quasi-periodic route to chaos. Through selecting the suitable feedback strength and the frequency detuning between the Bragg frequency of the GAFBG and the peak frequency of the free-running SL, the TDS of chaotic output from the GAFBGF-SL can be efficiently suppressed to a level below 0.02. Furthermore, by mapping the TDS and EWB in the parameter space of the feedback strength and the frequency detuning between the Bragg frequency of the GAFBG and the peak frequency of the free-running SL, the optimized parameter region, which is suitable for achieving chaotic signal with weak TDS and wide bandwidth, can be determined. We believe that this work will be helpful in acquiring the high quality chaotic signals and relevant applications.-
Keywords:
- fiber Bragg grating external-cavity semiconductor laser /
- chaos /
- time delay signature /
- bandwidth
[1] Lin C F, Su Y S, Wu B R 2002 IEEE Photon. Technol. Lett. 14 3
[2] Sakaguchi J, Katayama T, Kawaguchi H 2010 Opt. Express 18 12362
[3] Augustin L M, Smalbrugge E, Choquette K D, Karouta F, Strijbos R C, Verschaffelt G, Geluk E J, van de Roer T G, Thienpont H 2004 IEEE Photon. Technol. Lett. 16 708
[4] Mork J, Tromborg B, Mark J 1992 IEEE J. Quantum Electron. 28 93
[5] Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203 (in Chinese) [阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 65 204203]
[6] Hwang S K, Liu J M 2000 Opt. Commun. 183 195
[7] Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693
[8] Yan S L 2016 Chin. Phys. B 25 090504
[9] Lin F Y, Liu J M 2003 Opt. Commun. 221 173
[10] Zhong D Z, Luo W, Xu G L 2016 Chin. Phys. B 25 094202
[11] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[12] Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 63 070504]
[13] Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072
[14] Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619
[15] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728
[16] Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58
[17] Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970
[18] Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991
[19] Prokhorov M D, Ponomarenko V I, Karavaev A S, Bezruchko B P 2005 Physica D 203 209
[20] Lee M W, Rees P, Shore K A, Ortin S, Pesquera L, Valle A 2005 IEE Proc. Optoelectron. 152 97
[21] Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960
[22] Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808
[23] Zhang J Z, Feng C K, Zhang M J, Liu Y, Zhang Y N 2017 IEEE Photon. J. 9 1502408
[24] Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124
[25] Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Yang L, Zhu H N 2011 Opt. Commun. 284 5758
[26] Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829
[27] Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339
[28] Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236
[29] Cheng C H, Chen Y C, Lin F Y 2015 Opt. Express 23 2308
[30] Jiang N, Wang C, Xue C P, Li G L, Lin S Q, Qiu K 2017 Opt. Express 25 14359
[31] Li S S, Liu Q, Chan S C 2012 IEEE Photon. J. 4 1930
[32] Li S S, Chan S C 2015 IEEE J. Sel. Top. Quantum Electron. 21 541
[33] Zhong Z Q, Li S S, Chan S C, Xia G Q, Wu Z M 2015 Opt. Express 23 15459
[34] Wang D M, Wang L S, Zhao T, Gao H, Wang Y C, Chen X F, Wang A B 2017 Opt. Express 25 10911
[35] Erdogan T 1997 IEEE J. Lightwave Technol. 15 1277
[36] Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102
[37] Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010
-
[1] Lin C F, Su Y S, Wu B R 2002 IEEE Photon. Technol. Lett. 14 3
[2] Sakaguchi J, Katayama T, Kawaguchi H 2010 Opt. Express 18 12362
[3] Augustin L M, Smalbrugge E, Choquette K D, Karouta F, Strijbos R C, Verschaffelt G, Geluk E J, van de Roer T G, Thienpont H 2004 IEEE Photon. Technol. Lett. 16 708
[4] Mork J, Tromborg B, Mark J 1992 IEEE J. Quantum Electron. 28 93
[5] Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203 (in Chinese) [阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 65 204203]
[6] Hwang S K, Liu J M 2000 Opt. Commun. 183 195
[7] Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693
[8] Yan S L 2016 Chin. Phys. B 25 090504
[9] Lin F Y, Liu J M 2003 Opt. Commun. 221 173
[10] Zhong D Z, Luo W, Xu G L 2016 Chin. Phys. B 25 094202
[11] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[12] Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 63 070504]
[13] Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072
[14] Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619
[15] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728
[16] Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58
[17] Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970
[18] Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991
[19] Prokhorov M D, Ponomarenko V I, Karavaev A S, Bezruchko B P 2005 Physica D 203 209
[20] Lee M W, Rees P, Shore K A, Ortin S, Pesquera L, Valle A 2005 IEE Proc. Optoelectron. 152 97
[21] Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960
[22] Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808
[23] Zhang J Z, Feng C K, Zhang M J, Liu Y, Zhang Y N 2017 IEEE Photon. J. 9 1502408
[24] Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124
[25] Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Yang L, Zhu H N 2011 Opt. Commun. 284 5758
[26] Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829
[27] Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339
[28] Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236
[29] Cheng C H, Chen Y C, Lin F Y 2015 Opt. Express 23 2308
[30] Jiang N, Wang C, Xue C P, Li G L, Lin S Q, Qiu K 2017 Opt. Express 25 14359
[31] Li S S, Liu Q, Chan S C 2012 IEEE Photon. J. 4 1930
[32] Li S S, Chan S C 2015 IEEE J. Sel. Top. Quantum Electron. 21 541
[33] Zhong Z Q, Li S S, Chan S C, Xia G Q, Wu Z M 2015 Opt. Express 23 15459
[34] Wang D M, Wang L S, Zhao T, Gao H, Wang Y C, Chen X F, Wang A B 2017 Opt. Express 25 10911
[35] Erdogan T 1997 IEEE J. Lightwave Technol. 15 1277
[36] Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102
[37] Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010
计量
- 文章访问数: 6162
- PDF下载量: 150
- 被引次数: 0