搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性

起俊丰 钟祝强 王广娜 夏光琼 吴正茂

引用本文:
Citation:

高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性

起俊丰, 钟祝强, 王广娜, 夏光琼, 吴正茂

Characteristics of chaotic output from a Gaussian apodized fiber Bragg grating external-cavity semiconductor laser

Qi Jun-Feng, Zhong Zhu-Qiang, Wang Guang-Na, Xia Guang-Qiong, Wu Zheng-Mao
PDF
导出引用
  • 基于光反馈半导体激光器(SL)速率方程模型,理论仿真研究了高斯切趾型光纤布拉格光栅(GAFBG)反馈SL(GAFBGF-SL)混沌输出的延时特征(TDS)以及混沌带宽特性.结果表明:随着反馈强度的增加,GAFBGF-SL表现出由准周期进入混沌的动力学演化路径;通过合理选择GAFBG布拉格频率与SL中心频率之间的频率失谐及反馈强度,GAFBGF-SL混沌输出的TDS能得到有效抑制(低于0.02);通过进一步绘制混沌信号TDS及带宽在GAFBG布拉格频率与SL中心频率之间的频率失谐和反馈强度构成的参量空间中的分布图,确定了获取弱TDS、宽带宽光混沌信号的参数范围.
    Optical chaos based on semiconductor laser (SL) has some vital applications such as optical chaos secure communication, high-speed physical random number generation, chaos lidar, etc. Among various schemes to drive an SL into chaos, the introduction of external cavity feedback is one of the most popular techniques, which can generate chaos signals with high dimension and complexity. For the chaos output from an external cavity feedback SL, a time-delay signature (TDS) and bandwidth are two key indexes to assess the chaos signal quality. In this work, according to the rate-equation model of an optical feedback SL, we theoretically investigate the characteristics of TDS and effective bandwidth (EWB) of chaotic output from a Gaussian apodized fiber Bragg grating (GAFBG) feedback SL (GAFBGF-SL). The results show that with the increase of feedback strength, the GAFBGF-SL experiences a quasi-periodic route to chaos. Through selecting the suitable feedback strength and the frequency detuning between the Bragg frequency of the GAFBG and the peak frequency of the free-running SL, the TDS of chaotic output from the GAFBGF-SL can be efficiently suppressed to a level below 0.02. Furthermore, by mapping the TDS and EWB in the parameter space of the feedback strength and the frequency detuning between the Bragg frequency of the GAFBG and the peak frequency of the free-running SL, the optimized parameter region, which is suitable for achieving chaotic signal with weak TDS and wide bandwidth, can be determined. We believe that this work will be helpful in acquiring the high quality chaotic signals and relevant applications.
      Corresponding author: Xia Guang-Qiong, gqxia@swu.edu.cn;zmwu@swu.edu.cn ; Wu Zheng-Mao, gqxia@swu.edu.cn;zmwu@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475127, 61575163, 61775184).
    [1]

    Lin C F, Su Y S, Wu B R 2002 IEEE Photon. Technol. Lett. 14 3

    [2]

    Sakaguchi J, Katayama T, Kawaguchi H 2010 Opt. Express 18 12362

    [3]

    Augustin L M, Smalbrugge E, Choquette K D, Karouta F, Strijbos R C, Verschaffelt G, Geluk E J, van de Roer T G, Thienpont H 2004 IEEE Photon. Technol. Lett. 16 708

    [4]

    Mork J, Tromborg B, Mark J 1992 IEEE J. Quantum Electron. 28 93

    [5]

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203 (in Chinese) [阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 65 204203]

    [6]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [7]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [8]

    Yan S L 2016 Chin. Phys. B 25 090504

    [9]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [10]

    Zhong D Z, Luo W, Xu G L 2016 Chin. Phys. B 25 094202

    [11]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [12]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 63 070504]

    [13]

    Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072

    [14]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [15]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [16]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [17]

    Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970

    [18]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [19]

    Prokhorov M D, Ponomarenko V I, Karavaev A S, Bezruchko B P 2005 Physica D 203 209

    [20]

    Lee M W, Rees P, Shore K A, Ortin S, Pesquera L, Valle A 2005 IEE Proc. Optoelectron. 152 97

    [21]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [22]

    Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808

    [23]

    Zhang J Z, Feng C K, Zhang M J, Liu Y, Zhang Y N 2017 IEEE Photon. J. 9 1502408

    [24]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [25]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Yang L, Zhu H N 2011 Opt. Commun. 284 5758

    [26]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [27]

    Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339

    [28]

    Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236

    [29]

    Cheng C H, Chen Y C, Lin F Y 2015 Opt. Express 23 2308

    [30]

    Jiang N, Wang C, Xue C P, Li G L, Lin S Q, Qiu K 2017 Opt. Express 25 14359

    [31]

    Li S S, Liu Q, Chan S C 2012 IEEE Photon. J. 4 1930

    [32]

    Li S S, Chan S C 2015 IEEE J. Sel. Top. Quantum Electron. 21 541

    [33]

    Zhong Z Q, Li S S, Chan S C, Xia G Q, Wu Z M 2015 Opt. Express 23 15459

    [34]

    Wang D M, Wang L S, Zhao T, Gao H, Wang Y C, Chen X F, Wang A B 2017 Opt. Express 25 10911

    [35]

    Erdogan T 1997 IEEE J. Lightwave Technol. 15 1277

    [36]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [37]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

  • [1]

    Lin C F, Su Y S, Wu B R 2002 IEEE Photon. Technol. Lett. 14 3

    [2]

    Sakaguchi J, Katayama T, Kawaguchi H 2010 Opt. Express 18 12362

    [3]

    Augustin L M, Smalbrugge E, Choquette K D, Karouta F, Strijbos R C, Verschaffelt G, Geluk E J, van de Roer T G, Thienpont H 2004 IEEE Photon. Technol. Lett. 16 708

    [4]

    Mork J, Tromborg B, Mark J 1992 IEEE J. Quantum Electron. 28 93

    [5]

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203 (in Chinese) [阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 65 204203]

    [6]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [7]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [8]

    Yan S L 2016 Chin. Phys. B 25 090504

    [9]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [10]

    Zhong D Z, Luo W, Xu G L 2016 Chin. Phys. B 25 094202

    [11]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [12]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 63 070504]

    [13]

    Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072

    [14]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [15]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [16]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [17]

    Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970

    [18]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [19]

    Prokhorov M D, Ponomarenko V I, Karavaev A S, Bezruchko B P 2005 Physica D 203 209

    [20]

    Lee M W, Rees P, Shore K A, Ortin S, Pesquera L, Valle A 2005 IEE Proc. Optoelectron. 152 97

    [21]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [22]

    Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808

    [23]

    Zhang J Z, Feng C K, Zhang M J, Liu Y, Zhang Y N 2017 IEEE Photon. J. 9 1502408

    [24]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [25]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Yang L, Zhu H N 2011 Opt. Commun. 284 5758

    [26]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [27]

    Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339

    [28]

    Hong Y H, Spencer P S, Shore K A 2014 IEEE J. Quantum Electron. 50 236

    [29]

    Cheng C H, Chen Y C, Lin F Y 2015 Opt. Express 23 2308

    [30]

    Jiang N, Wang C, Xue C P, Li G L, Lin S Q, Qiu K 2017 Opt. Express 25 14359

    [31]

    Li S S, Liu Q, Chan S C 2012 IEEE Photon. J. 4 1930

    [32]

    Li S S, Chan S C 2015 IEEE J. Sel. Top. Quantum Electron. 21 541

    [33]

    Zhong Z Q, Li S S, Chan S C, Xia G Q, Wu Z M 2015 Opt. Express 23 15459

    [34]

    Wang D M, Wang L S, Zhao T, Gao H, Wang Y C, Chen X F, Wang A B 2017 Opt. Express 25 10911

    [35]

    Erdogan T 1997 IEEE J. Lightwave Technol. 15 1277

    [36]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [37]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

  • [1] 穆鹏华, 陈昊, 刘国鹏, 胡国四. 级联耦合纳米激光器混沌时延特征消除和带宽增强.  , 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [2] 庞爽, 冯玉玲, 于萍, 姚治海. 自混沌光相位调制光反馈半导体激光器输出光的混沌特性.  , 2022, 71(15): 150502. doi: 10.7498/aps.71.20220204
    [3] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽.  , 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [4] 李增, 冯玉玲, 王晓茜, 姚治海. 半导体激光器输出混沌光的延时特性和带宽.  , 2018, 67(14): 140501. doi: 10.7498/aps.67.20180035
    [5] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性.  , 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [6] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析.  , 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [7] 梁君生, 武媛, 王安帮, 王云才. 利用频谱仪提取双反馈混沌半导体激光器的外腔长度密钥.  , 2012, 61(3): 034211. doi: 10.7498/aps.61.034211
    [8] 冯野, 杨毅彪, 王安帮, 王云才. 利用半导体激光器环产生27 GHz的平坦宽带混沌激光.  , 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [9] 丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂. 双光反馈半导体激光混沌系统中外腔延时反馈特征的抑制.  , 2011, 60(1): 014210. doi: 10.7498/aps.60.014210
    [10] 朱樟明, 郝报田, 李儒, 杨银堂. 一种基于延时和带宽约束的纳米级互连线优化模型.  , 2010, 59(3): 1997-2003. doi: 10.7498/aps.59.1997
    [11] 杨玲珍, 乔占朵, 邬云翘, 王云才. 掺铒光纤环形激光器混沌带宽特性数值研究.  , 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [12] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法.  , 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [13] 赵严峰. 双反馈半导体激光器的混沌特性研究.  , 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [14] 颜森林. 半导体激光器混沌光电延时负反馈控制方法研究.  , 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [15] 颜森林. 延时反馈半导体激光器双劈控制混沌方法研究.  , 2008, 57(5): 2827-2831. doi: 10.7498/aps.57.2827
    [16] 颜森林. 外腔延时反馈半导体激光器混沌偏振可调控制方法研究.  , 2008, 57(11): 6878-6882. doi: 10.7498/aps.57.6878
    [17] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽.  , 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [18] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器.  , 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [19] 黄良玉, 罗晓曙, 方锦清, 赵益波, 唐国宁. 用滑模变结构控制方法实现外腔反馈式半导体激光器的混沌控制.  , 2005, 54(2): 543-549. doi: 10.7498/aps.54.543
    [20] 张瑞峰, 葛春风, 王书慧, 胡智勇, 李世忱. 熔锥型全波耦合器.  , 2003, 52(2): 390-394. doi: 10.7498/aps.52.390
计量
  • 文章访问数:  6162
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-23
  • 修回日期:  2017-08-20
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map