搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半导体激光器输出混沌光的延时特性和带宽

李增 冯玉玲 王晓茜 姚治海

引用本文:
Citation:

半导体激光器输出混沌光的延时特性和带宽

李增, 冯玉玲, 王晓茜, 姚治海

Time delay characteristics and bandwidth of chaotic laser from semiconductor laser

Li Zeng, Feng Yu-Ling, Wang Xiao-Qian, Yao Zhi-Hai
PDF
导出引用
  • 提出一个新的方案用于抑制半导体激光器输出混沌光的延时特性并研究其带宽.在该方案中,将由伪随机信号驱动的相位调制器加到具有双路光反馈的半导体激光器的两个反馈腔中,从而构成具有双路相位调制光反馈的分布反馈半导体激光器系统.数值研究了延迟时间和反馈系数等参数对该系统输出混沌光的延时特性的影响,用自相关函数曲线中的延时特征峰的最大值表示延时特性.然后将该系统对延时特性的抑制效果和具有双路光反馈的分布反馈半导体激光器系统以及具有单路相位调制光反馈的分布反馈半导体激光器系统进行比较,结果表明本文所提出方案的抑制效果最好.进而基于能有效抑制延时特性的参数条件研究了具有双路相位调制光反馈的分布反馈半导体激光器输出混沌光的带宽,结果表明,抽运因子的增大和反馈系数的增加都能使系统输出混沌光的带宽变大.
    The center wavelength of the distribution feedback semiconductor laser is about 1550 nm, and it is in the lowest loss window of the optical fiber communication. A distribution feedback semiconductor laser (DFB-SL) can generate wideband chaotic signals under external disturbances such as optical feedback, optical injection, etc. Thus, due to the simple structure, DFB-SLs with the optical feedback are widely applied to many fields, including information security, lasers radar, and physical entropy sources for generating physical random numbers. However, optical feedback can cause weak periodicity in chaotic signals from the semiconductor laser, and increase the time delay characteristics of chaotic laser, moreover reduce the quality of random numbers generated by using chaotic signals. Meanwhile, to meet the needs of the current high speed and large capacity communication, the DFB-SL, which can generate wideband chaotic laser with low time delay characteristics, has received wide attention and become a hot research subject.In this paper, we present a new scheme for suppressing the time delay characteristics and investigating the bandwidth (BW) of chaotic signals from the semiconductor laser. In this scheme, we build a system that is a distribution feedback semiconductor laser with double phase modulated optical feedback (DFB-SL-DPMOF). In this system, two phase modulators driven by the pseudorandom signals are respectively added to the two optical feedback cavities to eliminate the weak periodicity of the generated chaotic signals. For this system, we numerically investigate the influence of the system parameter, such as the delay time, feedback coefficient, etc., on the time delay characteristic of the chaotic laser. In this paper, the time delay characteristic of chaotic signal is expressed by the maximum value of the time delay signature (TDS) peak of the autocorrelation function curve. Then, to illuminate the effectiveness of this system, other two systems, i.e., DFB-SL with double optical feedback (DFB-SL-DOF) and DFB-SL with single phase modulated optical feedback (DFB-SL-SPMOF) are considered. We study the suppression effect of the system on the TDS among DFB-SL-DPMOF, DFB-SL-DOF and DFB-SL-SPMOF. For these three systems, we give and analyze the simulation curves of the time delay characteristic values with the feedback coefficient and the pumping factor respectively. The results indicate that our proposed scheme has the best suppression effect. Moreover, we numerically investigate the BW of chaotic signals from DFB-SL-DPMOF based on the parameter conditions suppressing TDS effectively. The results show that BW becomes large with the pumping factor and feedback coefficient increasing, and the maximum BW value of the obtained chaotic laser is about 7.2 GHz. Therefore the effectiveness of the presented scheme is numerically clarified. And the conclusions of this paper are useful for applying the chaotic laser to the secure communication field.
      通信作者: 冯玉玲, FYLCUST@163.com
    • 基金项目: 吉林省重点科技攻关项目(批准号:20160204020GX)资助的课题.
      Corresponding author: Feng Yu-Ling, FYLCUST@163.com
    • Funds: Project supported by the Key Science and Technology Program of Jilin Province, China (Grant No. 20160204020GX).
    [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [3]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [4]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Elect. 40 815

    [5]

    Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636

    [6]

    Vicente R, Dauden J, Colet P, Toral R 2005 IEEE J. Quantum Elect. 41 541

    [7]

    Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018

    [8]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [9]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Elect. 45 879

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [11]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [12]

    Wu J G, Xia G Q, Cao L P, Wu Z M 2009 Opt. Commun. 282 3153

    [13]

    Lee M W, Rees P, Shore K A, Ortin S 2005 IEE P-Optoelectron. 152 97

    [14]

    Wang A B, Yang Y B, Wang B J, Zhang B B, Li L, Wang Y C 2013 Opt. Express 21 8701

    [15]

    Lu D, Zhong Z Q, Xia G Q, Wu Z M 2016 Acta Photon. Sin. 45 13 (in Chinese) [卢东, 钟祝强, 夏光琼, 吴正茂 2016 光子学报 45 13]

    [16]

    Xiang S, Pan W, Zhang L, Wen A, Shang L, Zhang H, Lin L 2014 Opt. Commun. 324 38

    [17]

    Wu J, Xia G, Wu Z 2009 Opt. Express 17 20124

    [18]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 56 4372]

    [19]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Elect. 16 347

    [20]

    Gao F, Li N Q, Zhang L Y, Ouyang Y K 2016 J Quantum Opt. 22 289 (in Chinese) [高飞, 李念强, 张力月, 欧阳康 2016 量子光学学报 22 289]

    [21]

    Mikami T, Kanno K, Aoyama K, Uchida A, Ikeguchi T, Harayama T, Sunada S, Arai K, Yoshimura K, Davis P 2012 Phys. Rev. E 85 016211

    [22]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 64 084204]

  • [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [3]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [4]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Elect. 40 815

    [5]

    Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636

    [6]

    Vicente R, Dauden J, Colet P, Toral R 2005 IEEE J. Quantum Elect. 41 541

    [7]

    Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018

    [8]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [9]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Elect. 45 879

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [11]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [12]

    Wu J G, Xia G Q, Cao L P, Wu Z M 2009 Opt. Commun. 282 3153

    [13]

    Lee M W, Rees P, Shore K A, Ortin S 2005 IEE P-Optoelectron. 152 97

    [14]

    Wang A B, Yang Y B, Wang B J, Zhang B B, Li L, Wang Y C 2013 Opt. Express 21 8701

    [15]

    Lu D, Zhong Z Q, Xia G Q, Wu Z M 2016 Acta Photon. Sin. 45 13 (in Chinese) [卢东, 钟祝强, 夏光琼, 吴正茂 2016 光子学报 45 13]

    [16]

    Xiang S, Pan W, Zhang L, Wen A, Shang L, Zhang H, Lin L 2014 Opt. Commun. 324 38

    [17]

    Wu J, Xia G, Wu Z 2009 Opt. Express 17 20124

    [18]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 56 4372]

    [19]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Elect. 16 347

    [20]

    Gao F, Li N Q, Zhang L Y, Ouyang Y K 2016 J Quantum Opt. 22 289 (in Chinese) [高飞, 李念强, 张力月, 欧阳康 2016 量子光学学报 22 289]

    [21]

    Mikami T, Kanno K, Aoyama K, Uchida A, Ikeguchi T, Harayama T, Sunada S, Arai K, Yoshimura K, Davis P 2012 Phys. Rev. E 85 016211

    [22]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 64 084204]

  • [1] 穆鹏华, 陈昊, 刘国鹏, 胡国四. 级联耦合纳米激光器混沌时延特征消除和带宽增强.  , 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [2] 庞爽, 冯玉玲, 于萍, 姚治海. 自混沌光相位调制光反馈半导体激光器输出光的混沌特性.  , 2022, 71(15): 150502. doi: 10.7498/aps.71.20220204
    [3] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽.  , 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [4] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性.  , 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [5] 起俊丰, 钟祝强, 王广娜, 夏光琼, 吴正茂. 高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性.  , 2017, 66(24): 244207. doi: 10.7498/aps.66.244207
    [6] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析.  , 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [7] 安颖, 杜振辉, 刘景旺, 徐可欣. 激光自外差相干测量中分布反馈半导体激光器电流调谐非线性的补偿方法.  , 2012, 61(3): 034207. doi: 10.7498/aps.61.034207
    [8] 丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂. 双光反馈半导体激光混沌系统中外腔延时反馈特征的抑制.  , 2011, 60(1): 014210. doi: 10.7498/aps.60.014210
    [9] 何俊, 魏彦玉, 宫玉彬, 段兆云, 王文祥. Ka波段曲折双脊波导行波管的研究.  , 2010, 59(4): 2843-2849. doi: 10.7498/aps.59.2843
    [10] 杨玲珍, 乔占朵, 邬云翘, 王云才. 掺铒光纤环形激光器混沌带宽特性数值研究.  , 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [11] 朱樟明, 郝报田, 李儒, 杨银堂. 一种基于延时和带宽约束的纳米级互连线优化模型.  , 2010, 59(3): 1997-2003. doi: 10.7498/aps.59.1997
    [12] 任爱红, 刘正颖, 张蓉竹, 刘静伦, 孙年春. 准相位匹配倍频系统的带宽性质研究.  , 2010, 59(10): 7050-7054. doi: 10.7498/aps.59.7050
    [13] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法.  , 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [14] 刘涛, 顾畹仪, 史培明, 喻松, 张华. 基于准相位匹配晶体的宽带可调谐光参量放大过程研究.  , 2009, 58(4): 2482-2487. doi: 10.7498/aps.58.2482
    [15] 赵严峰. 双反馈半导体激光器的混沌特性研究.  , 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [16] 颜森林. 半导体激光器混沌光电延时负反馈控制方法研究.  , 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [17] 颜森林. 延时反馈半导体激光器双劈控制混沌方法研究.  , 2008, 57(5): 2827-2831. doi: 10.7498/aps.57.2827
    [18] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽.  , 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [19] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器.  , 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [20] 张瑞峰, 葛春风, 王书慧, 胡智勇, 李世忱. 熔锥型全波耦合器.  , 2003, 52(2): 390-394. doi: 10.7498/aps.52.390
计量
  • 文章访问数:  7391
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-05
  • 修回日期:  2018-03-23
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map