搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Non-Kolmogorov湍流大气中小尺度热晕效应线性理论

张鹏飞 乔春红 冯晓星 黄童 李南 范承玉 王英俭

引用本文:
Citation:

Non-Kolmogorov湍流大气中小尺度热晕效应线性理论

张鹏飞, 乔春红, 冯晓星, 黄童, 李南, 范承玉, 王英俭

Linearization theory of small scale thermal blooming effect in non-Kolmogorov turbulent atmosphere

Zhang Peng-Fei, Qiao Chun-Hong, Feng Xiao-Xing, Huang Tong, Li Nan, Fan Cheng-Yu, Wang Ying-Jian
PDF
导出引用
  • 从小尺度热晕线性理论出发,在non-Kolmogorov谱的基础上,得到了non-Kolmogorov谱湍流下热晕相位补偿的Strehl比表达式,分析了湍流谱对高能激光的相位补偿的影响.研究结果表明湍流谱对湍流热晕效应的相位补偿有重要的影响.在相同的湍流菲涅耳数下,当谱指数越接近于3时补偿效果越差,谱指数接近于4时补偿效果越好.在相同大气相干长度条件下或在相同湍流折射率常量条件下,当谱指数接近于3时,Strehl比随热晕效应的增强而下降变快,当湍流谱指数逐渐接近于4时,Strehl比下降速度变慢.其原因是随着湍流谱指数的增大,湍流热晕相互作用引起的对数振幅起伏增长变慢.
    High energy laser beams propagating in the atmosphere are subjected to a variety of effects, such as the absorption and scattering of molecule and aerosol, atmospheric turbulence effects, thermal blooming effects, and the interaction between turbulence and thermal blooming. In general, these atmospheric propagation effects degrade laser beam quality and reduce the beam power concentration at the target. With adaptive optics compensation, the beam quality can be modified. But small-scale perturbation has developed and the phase compensation becomes unstable in some conditions. The performance of adaptive-optics system is degraded, which effects can be well explained by small-scale linear theory of thermal blooming. However previous theoretical studies of small-scale thermal blooming focused on the Kolmogorov turbulence. In the past decade, experimental evidence has shown significant deviations from Kolmogorov model in certain portions of the atmosphere. An generalized power-law of non-Kolmogorov turbulence model has been introduced, which becomes quite popular in the optical propagation community. Numerous theoretical and developmental efforts have been made based on non-Kolmogorov turbulence model in recent years. Thus it is very meaningful and imperative to explore the theoretical mechanism of high energy laser phase compensation with non-Kolmogorov turbulence.In this study, the Strehl ratio of the thermal blooming phase compensation is generalized with the non-Kolmogorov turbulence spectrum, and the analytical expression is obtained based on the linear theory of small-scale thermal blooming. The influence of the turbulence spectrum on the phase compensation of the high energy laser is analyzed. The results show that the turbulence spectrum has an important influence on the phase compensation of turbulent thermal blooming effect. Under the same turbulence Fresnel number condition, the compensation effect is worse when the spectral index is closer to 3 and the compensation effect is better when the spectral index is close to 4. Under the same atmospheric coherence length condition or under the same turbulence refractive index constant condition, the Strehl ratio decreases with the increase of the thermal blooming effect when the spectral index is close to 3 and the decline rate of the Strehl ratio is slower when the turbulence spectrum index is close to 4. This is because as the turbulence spectrum exponent increases, the logarithmic amplitude fluctuation slows down due to the interaction between turbulence and thermal blooming. These theoretical results can provide some scientific bases and theoretical guidance for the practical applications of high energy laser transmission.
      通信作者: 乔春红, chqiao@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61405205)资助的课题.
      Corresponding author: Qiao Chun-Hong, chqiao@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61405205).
    [1]

    Chambers D H, Karr T J, Morris J R, Cramer P, Viecelli J A, Gautesen A K 1990 Proc. SPIE 1221 83

    [2]

    Chambers D H, Viecelli J A, Karr T J 1990 Proc. SPIE 1221 220

    [3]

    Karr T J 1990 Proc. SPIE 1221 26

    [4]

    Karr T J 1989 J. Opt. Soc. Am. A 6 1038

    [5]

    Briggs R J 1987 Lawrence Livermore National Lab. Technical Report UCID-21118

    [6]

    Karr T J 1991 Appl. Opt. 30 363

    [7]

    Karr T J, Morris J R, Chambers D H, Viecelli J A, Cramer P G 1990 J. Opt. Soc. Am. B 7 1103

    [8]

    Karr T J, Rushford M C, Murray J R, Morris J R 1991 J. Opt. Soc. Am B 8 993

    [9]

    Johnson B, Schonfeld J F 1991 Opt. Lett. 16 1258

    [10]

    Johnson B, Primmerman C A 1989 Opt. Lett. 14 639

    [11]

    Higgs C, Fouche D G, Pearson C F 1992 Proc. SPIE 1628 210

    [12]

    Xue B, Cui L, Xue W, Bai X, Zhou F 2011 J. Opt. Soc. Am. A 28 912

    [13]

    Cui L Y, Xue B D, Cao X G, Dong J K, Wang J N 2010 Opt. Express 18 21269

    [14]

    Pérez L D G, Zunino L 2008 Opt. Lett. 33 572

    [15]

    Tan L, Du W, Ma J, Yu S, Han Q 2010 Opt. Express 18 451

    [16]

    Shan X, Liu M, Zhang N 2017 Opt. Eng. 56 026111

    [17]

    Zhou Y, Yuan Y, Qu J, Huang W 2016 Opt. Express 24 10682

    [18]

    Yan X, Zhang P F, Zhang J H, Qiao C H, Fan C Y 2016 Chin. Phys. B 25 84204

    [19]

    Huang Y, Wang F, Gao Z, Zhang B 2015 Opt. Express 23 1088

    [20]

    Wang Y J 1996 Ph. D. Dissertation (Hefei: Anhui Institute of Opitcs and Fine Mechanics, Chinese Academy of Sciences) (in Chinese) [王英俭 1996 博士学位论文(合肥: 中国科学院安徽光学精密机械研究所)]

    [21]

    Enguehard S, Hatfield B 2004 Proc. SPIE 5552 41

    [22]

    Enguehard S, Hatfield B 1994 J. Opt. Soc. Am. A 11 908

    [23]

    Enguehard S, Hatfield B 1991 Proc. SPIE 1408 178

    [24]

    Enguehard S, Hatfield B 1991 J. Opt. Soc. Am. A 8 637

    [25]

    Enguehard S, Hatfield B 1991 Proc. SPIE 1415 128

    [26]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Berllingham: SPIE) pp74-85

    [27]

    Lukin V P, Fortes B V 2002 Adaptive Beaming and Imaging in the Turbulence Atmosphere (Berllingham: SPIE) pp15-20

    [28]

    Toselli I, Andrews L C, Phillips R L, Ferrero V 2007 Proc. SPIE 6551 65510E

    [29]

    Tang H, Ou B, Luo B, Guo H, Dang A 2011 J. Opt. Soc. Am. A 28 1016

    [30]

    Zhou P, Ma Y, Wang X, Zhao H, Liu Z 2010 Opt. Lett. 35 1043

    [31]

    Beland R R 1995 Proc. SPIE 2375 6

    [32]

    Stribling B E, Welsh B M, Roggemann M C 1995 Proc. SPIE 2471 181

    [33]

    Enguehard S, Hatfield B 1995 Prog. Quant. Electron. 19 239

    [34]

    Tyson R K 1982 Appl. Opt. 21 787

  • [1]

    Chambers D H, Karr T J, Morris J R, Cramer P, Viecelli J A, Gautesen A K 1990 Proc. SPIE 1221 83

    [2]

    Chambers D H, Viecelli J A, Karr T J 1990 Proc. SPIE 1221 220

    [3]

    Karr T J 1990 Proc. SPIE 1221 26

    [4]

    Karr T J 1989 J. Opt. Soc. Am. A 6 1038

    [5]

    Briggs R J 1987 Lawrence Livermore National Lab. Technical Report UCID-21118

    [6]

    Karr T J 1991 Appl. Opt. 30 363

    [7]

    Karr T J, Morris J R, Chambers D H, Viecelli J A, Cramer P G 1990 J. Opt. Soc. Am. B 7 1103

    [8]

    Karr T J, Rushford M C, Murray J R, Morris J R 1991 J. Opt. Soc. Am B 8 993

    [9]

    Johnson B, Schonfeld J F 1991 Opt. Lett. 16 1258

    [10]

    Johnson B, Primmerman C A 1989 Opt. Lett. 14 639

    [11]

    Higgs C, Fouche D G, Pearson C F 1992 Proc. SPIE 1628 210

    [12]

    Xue B, Cui L, Xue W, Bai X, Zhou F 2011 J. Opt. Soc. Am. A 28 912

    [13]

    Cui L Y, Xue B D, Cao X G, Dong J K, Wang J N 2010 Opt. Express 18 21269

    [14]

    Pérez L D G, Zunino L 2008 Opt. Lett. 33 572

    [15]

    Tan L, Du W, Ma J, Yu S, Han Q 2010 Opt. Express 18 451

    [16]

    Shan X, Liu M, Zhang N 2017 Opt. Eng. 56 026111

    [17]

    Zhou Y, Yuan Y, Qu J, Huang W 2016 Opt. Express 24 10682

    [18]

    Yan X, Zhang P F, Zhang J H, Qiao C H, Fan C Y 2016 Chin. Phys. B 25 84204

    [19]

    Huang Y, Wang F, Gao Z, Zhang B 2015 Opt. Express 23 1088

    [20]

    Wang Y J 1996 Ph. D. Dissertation (Hefei: Anhui Institute of Opitcs and Fine Mechanics, Chinese Academy of Sciences) (in Chinese) [王英俭 1996 博士学位论文(合肥: 中国科学院安徽光学精密机械研究所)]

    [21]

    Enguehard S, Hatfield B 2004 Proc. SPIE 5552 41

    [22]

    Enguehard S, Hatfield B 1994 J. Opt. Soc. Am. A 11 908

    [23]

    Enguehard S, Hatfield B 1991 Proc. SPIE 1408 178

    [24]

    Enguehard S, Hatfield B 1991 J. Opt. Soc. Am. A 8 637

    [25]

    Enguehard S, Hatfield B 1991 Proc. SPIE 1415 128

    [26]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Berllingham: SPIE) pp74-85

    [27]

    Lukin V P, Fortes B V 2002 Adaptive Beaming and Imaging in the Turbulence Atmosphere (Berllingham: SPIE) pp15-20

    [28]

    Toselli I, Andrews L C, Phillips R L, Ferrero V 2007 Proc. SPIE 6551 65510E

    [29]

    Tang H, Ou B, Luo B, Guo H, Dang A 2011 J. Opt. Soc. Am. A 28 1016

    [30]

    Zhou P, Ma Y, Wang X, Zhao H, Liu Z 2010 Opt. Lett. 35 1043

    [31]

    Beland R R 1995 Proc. SPIE 2375 6

    [32]

    Stribling B E, Welsh B M, Roggemann M C 1995 Proc. SPIE 2471 181

    [33]

    Enguehard S, Hatfield B 1995 Prog. Quant. Electron. 19 239

    [34]

    Tyson R K 1982 Appl. Opt. 21 787

  • [1] 马瑞瑞, 陈骝, 仇志勇. 反磁剪切托卡马克等离子体中低频剪切阿尔芬波的理论研究.  , 2023, 72(21): 215207. doi: 10.7498/aps.72.20230255
    [2] 高兆琳, 刘瑞桦, 温凯, 马英, 李建郎, 郜鹏. 结构光照明相位/荧光双模式显微技术.  , 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [3] 张建柱, 张飞舟, 苏华, 胡鹏, 谢晓钢, 罗文. 强激光上行大气传输热晕效应导致的光束偏折研究.  , 2021, 70(24): 244202. doi: 10.7498/aps.70.20211138
    [4] 王鹏, 薛纭, 楼智美. 黏性流体中超细长弹性杆的动力学不稳定性.  , 2017, 66(9): 094501. doi: 10.7498/aps.66.094501
    [5] 梁美彦, 张存林. 相位补偿算法对提高太赫兹雷达距离像分辨率的研究.  , 2014, 63(14): 148701. doi: 10.7498/aps.63.148701
    [6] 张月, 卓青青, 刘红侠, 马晓华, 郝跃. 功率MOSFET的负偏置温度不稳定性效应中的平衡现象.  , 2013, 62(16): 167305. doi: 10.7498/aps.62.167305
    [7] 杜辉, 魏岗, 张原铭, 徐小辉. 内孤立波沿缓坡地形传播特性的实验研究.  , 2013, 62(6): 064704. doi: 10.7498/aps.62.064704
    [8] 张恒, 段文山. 二维玻色-爱因斯坦凝聚中孤立波的调制不稳定性.  , 2013, 62(4): 044703. doi: 10.7498/aps.62.044703
    [9] 粟荣涛, 周朴, 王小林, 冀翔, 许晓军. 不同波形脉冲激光的时域误差对相干合成的影响.  , 2012, 61(8): 084206. doi: 10.7498/aps.61.084206
    [10] 魏琪, 鄂文汲. 薄膜去湿不稳定性的热力学分析.  , 2012, 61(16): 160508. doi: 10.7498/aps.61.160508
    [11] 王光昶, 郑志坚, 谷渝秋, 陈 涛, 张 婷. 利用渡越辐射研究超热电子在固体靶中的输运过程.  , 2007, 56(2): 982-987. doi: 10.7498/aps.56.982
    [12] 黄印博, 王英俭. 聚焦光束大气传输光束扩展定标规律的数值分析.  , 2006, 55(12): 6715-6719. doi: 10.7498/aps.55.6715
    [13] 魏新华, 周国成, 曹晋滨, 李柳元. 无碰撞电流片低频电磁模不稳定性:MHD模型.  , 2005, 54(7): 3228-3235. doi: 10.7498/aps.54.3228
    [14] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 薛海中, 唐映德. 激光二极管抽运固体激光器场分布的热不稳定性研究.  , 2003, 52(2): 355-361. doi: 10.7498/aps.52.355
    [15] 刘金远, 宫野, 李国炳, 马腾才, 张林. 轴向磁场中线性热势模型电弧的螺旋不稳定性.  , 1996, 45(4): 608-618. doi: 10.7498/aps.45.608
    [16] 张家泰, 聂小波, 苏秀敏. 相干与非相干激光成丝不稳定性的数值模拟研究.  , 1994, 43(1): 52-63. doi: 10.7498/aps.43.52
    [17] 杨国健, 胡岗. 注入信号激光系统的不稳定性分析.  , 1990, 39(12): 1900-1907. doi: 10.7498/aps.39.1900
    [18] 张立根, 陈楠鹏, 巴恩旭. 光反馈对CO2激光器不稳定性的影响.  , 1990, 39(2): 183-189. doi: 10.7498/aps.39.183
    [19] 王守武, 王启明, 林世鸣. 双稳激光器的不稳定性本质研究.  , 1986, 35(8): 1095-1101. doi: 10.7498/aps.35.1095
    [20] 王心宜, 林磊. 向列相液晶电流体不稳定性——偏置电场效应.  , 1983, 32(12): 1565-1573. doi: 10.7498/aps.32.1565
计量
  • 文章访问数:  6087
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-16
  • 修回日期:  2017-07-24
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map