In this paper,methods of chaos-control of a semiconductor laser are studied using a photoelectric delayed negative-feedback scheme with additive photoelectric delayed control, and the maximum Laypunov exponent of the controlled system is analyzed. Three physical models of photoelectric delayed chaos-control of an injected semiconductor laser are presented. Firstly,by adjusting the delay time or the feedback photocurrent, the chaotic laser can be conducted into period-3 state, period-5 or other multi-periodic states. Secondly, by periodic modulation of the photocurrent into the laser, the chaotic laser can be brought into a period-8 states or a period-9 state. Lastly, we make use of the photoelectric delayed negative-feedback and an additive current modulation to perform chaos-control, the chaotic laser can be stabilized into a single-periodic state or multi-periodic state.