搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀外力对粗粒化DNA穿孔行为影响的模拟研究

马姗 马军 杨光参

引用本文:
Citation:

非均匀外力对粗粒化DNA穿孔行为影响的模拟研究

马姗, 马军, 杨光参

Simulation of translocating pore of DNA in non-uniform force by coarse-grained model

Ma Shan, Ma Jun, Yang Guang-Can
PDF
导出引用
  • 通过建立DNA高分子的粗粒化模型, 采用分子动力学方法模拟其穿孔行为, 研究了不同的孔内非均匀外力对DNA高分子穿孔的影响. 外力及高分子链内部势能在分子水平下对单体的综合作用很复杂, 某些条件穿孔过程会产生后面粒子超过前面粒子而使高分子链堵塞在孔内的情况. 研究还发现, 穿孔行为是否成功与孔口力的大小有关, 在成功穿孔的情况下, 非均匀外力相比于恒力情况穿孔时间至少减少了1/2. 这些结果对理解DNA复杂的穿孔机理提供了新的视角.
    Translocating pore of biomacromolecules is a common phenomenon in many biological processes, such as DNA transcription, cell infection of virus and transmembrane of proteins. The understanding of translocating pore of DNA is important for studying the DNA sequencing, gene therapy and virus infection. According to the coarse-grained model, we use molecular dynamics simulations to investigate the process of translocating pore of DNA under the actions of different non-uniform forces. In the present study, we consider five kinds of non-uniform forces, i.e., linearly increasing, linearly decreasing, V-type, inverted V-shaped, and periodic type. In the simulations of coarse-grained DNA, we find that the force on the pore opening palys a key role in the process of translocation of polymer. When the force is small, the probability of successful translocation of DNA is low accordingly. In the case of inverted V-shaped potential, the difference between the maximum and minimum force should be in a limited range to a probable translocation of DNA. Out of the range it might lead to clogged pores in the polymer chain. In the action of a non-uniform force, the translocating pore of DNA shows a series of complicated behaviors. For example, the end of a polymer can move faster than its head, resulting in the hole clogging and accumulation of polymers. A reversion can occasionally occur after a successful translocation of polymer. Therefore, non-uniform force leads to various scenarios of translocating pore of polymers.In summary, due to the complicated interactions between external forces and internal potential of polymer chains, particles can be clogged in the pore since the following particles overtake the leading ones in the chain. It is also found that the success of pore translation of DNA is significantly dependent on the acting force on the pore. Among all the cases of translating the pore successfully, the translation time in the case of non-uniform force is about half that in the case of uniform force. These results might provide an insight into the understanding of the complicated pore translating mechanism of DNA.
      通信作者: 杨光参, yanggc@wzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274245,11574243)和国家自然科学基金青年科学基金(批准号:11304232)资助的课题.
      Corresponding author: Yang Guang-Can, yanggc@wzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274245, 11574243) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11304232).
    [1]

    Kasianowich J J, Brandin E, Branton D, Deamer D W 1996 Proc. Natl. Acad. Sci. USA 93 13770

    [2]

    Meller A, Nivon L, Brandin E, Golovchenko J, Branton D 2000 Proc. Natl. Acad. Sci. USA 97 1079

    [3]

    Gu L Q, Braha O, Conlan S, Cheley S, Bayley H 1999 Nature 398 686

    [4]

    Sung W, Park P J 1996 Phys. Rev. Lett. 77 783

    [5]

    Luo K F, Ollila S T T, Huopaniemi I, Ala-Nissila T, Pomorski P, Karttunen M, Ying S C, Bhattacharya A 2008 Phys. Rev. E 78 050901

    [6]

    Luo K F, Ala-Nissila T, Ying S C, Bhattacharya A 2008 Phys. Rev. E 78 061911

    [7]

    Chen Z, Jiang Y B, Dunphy D R, Adams D P, Hodges C, Liu N G, Zhang N, Xomeritakis G, Jin X Z, Aluru N R, Gaik S J, Hillhouse H W, Brinker C J 2010 Nat. Mater. 9 667

    [8]

    Storm A J, Storm C, Chen J, Zandbergen H, Joanny J F, Dekker C 2005 Nano Lett. 5 1193

    [9]

    Venkatesan B M, Dorvel B, Yemenicioglu S, Watkins N, Petrov I, Bashir R 2009 Adv. Mater. 21 2771

    [10]

    Stoddart D, Heron A J, Mikhailova E, Maglia G, Bayley H 2009 Proc. Natl. Acad. Sci. USA 106 7702

    [11]

    Chen Z L, Xu W R, Tang L D 2007 Molecular Simulation Theory and Practice (Vol. 1) (Beijing: Chemical Industry Press) p67 (in Chinese) [陈正隆, 徐为人, 汤立达 2007 分子模拟的理论与实践 (第1卷) (北京: 化学工业出版社) 第67页]

    [12]

    Li Y L, Luo C L 2002 Acta. Phys. Sin. 51 2589 (in Chinese) [李延龄, 罗成林 2002 51 2589]

    [13]

    Knotts IV T A, Rathore N, Schwartz D C, de Pablo J J 2007 J. Chem. Phys. 126 084901

    [14]

    Forrey C, Muthukumar M 2007 J. Chem. Phys. 127 015102

    [15]

    Kenward M, Slater G W 2004 Eur. Phys. J. E 14 55

    [16]

    Maglia G, Restrepo M R, Mikhailova E, Bayley H 2008 P. Natl. Acad. Sci. 105 19720

  • [1]

    Kasianowich J J, Brandin E, Branton D, Deamer D W 1996 Proc. Natl. Acad. Sci. USA 93 13770

    [2]

    Meller A, Nivon L, Brandin E, Golovchenko J, Branton D 2000 Proc. Natl. Acad. Sci. USA 97 1079

    [3]

    Gu L Q, Braha O, Conlan S, Cheley S, Bayley H 1999 Nature 398 686

    [4]

    Sung W, Park P J 1996 Phys. Rev. Lett. 77 783

    [5]

    Luo K F, Ollila S T T, Huopaniemi I, Ala-Nissila T, Pomorski P, Karttunen M, Ying S C, Bhattacharya A 2008 Phys. Rev. E 78 050901

    [6]

    Luo K F, Ala-Nissila T, Ying S C, Bhattacharya A 2008 Phys. Rev. E 78 061911

    [7]

    Chen Z, Jiang Y B, Dunphy D R, Adams D P, Hodges C, Liu N G, Zhang N, Xomeritakis G, Jin X Z, Aluru N R, Gaik S J, Hillhouse H W, Brinker C J 2010 Nat. Mater. 9 667

    [8]

    Storm A J, Storm C, Chen J, Zandbergen H, Joanny J F, Dekker C 2005 Nano Lett. 5 1193

    [9]

    Venkatesan B M, Dorvel B, Yemenicioglu S, Watkins N, Petrov I, Bashir R 2009 Adv. Mater. 21 2771

    [10]

    Stoddart D, Heron A J, Mikhailova E, Maglia G, Bayley H 2009 Proc. Natl. Acad. Sci. USA 106 7702

    [11]

    Chen Z L, Xu W R, Tang L D 2007 Molecular Simulation Theory and Practice (Vol. 1) (Beijing: Chemical Industry Press) p67 (in Chinese) [陈正隆, 徐为人, 汤立达 2007 分子模拟的理论与实践 (第1卷) (北京: 化学工业出版社) 第67页]

    [12]

    Li Y L, Luo C L 2002 Acta. Phys. Sin. 51 2589 (in Chinese) [李延龄, 罗成林 2002 51 2589]

    [13]

    Knotts IV T A, Rathore N, Schwartz D C, de Pablo J J 2007 J. Chem. Phys. 126 084901

    [14]

    Forrey C, Muthukumar M 2007 J. Chem. Phys. 127 015102

    [15]

    Kenward M, Slater G W 2004 Eur. Phys. J. E 14 55

    [16]

    Maglia G, Restrepo M R, Mikhailova E, Bayley H 2008 P. Natl. Acad. Sci. 105 19720

  • [1] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟.  , 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [2] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟.  , 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [3] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟.  , 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [4] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟.  , 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [5] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响.  , 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [6] 李媛, 彭平. 非晶Ag晶化过程中不同类型晶核结构的识别与跟踪.  , 2019, 68(7): 076401. doi: 10.7498/aps.68.20182188
    [7] 熊开欣, 席昆, 鲍磊, 张忠良, 谭志杰. 脱氧核糖核酸柔性的分子动力学模拟:Amber bsc1和bsc0力场的对比研究.  , 2018, 67(10): 108701. doi: 10.7498/aps.67.20180326
    [8] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟.  , 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [9] 王曦, 黎明, 叶方富, 周昕. DNA超分子水凝胶的粗粒化建模与模拟.  , 2017, 66(15): 150201. doi: 10.7498/aps.66.150201
    [10] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽. 基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小.  , 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [11] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟.  , 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [12] 董垒, 王卫国. 纯铜[0 1 1]倾侧型非共格3晶界结构稳定性分子动力学模拟研究.  , 2013, 62(15): 156102. doi: 10.7498/aps.62.156102
    [13] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响.  , 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [14] 徐志欣, 李家云, 孙民华, 姚秀伟. 非晶纳米Ni500团簇等温晶化过程中的结构与动力学研究.  , 2013, 62(18): 186101. doi: 10.7498/aps.62.186101
    [15] 陈青, 王淑英, 孙民华. 纳米Cu颗粒等温晶化过程的分子动力学模拟研究.  , 2012, 61(14): 146101. doi: 10.7498/aps.61.146101
    [16] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟.  , 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [17] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟.  , 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [18] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟.  , 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [19] 赵九洲, 刘 俊, 赵 毅, 胡壮麒. 压力对非晶铜形成影响的分子动力学模拟.  , 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [20] 李 欣, 胡元中, 王 慧. 磁盘润滑膜全氟聚醚的分子动力学模拟研究.  , 2005, 54(8): 3787-3792. doi: 10.7498/aps.54.3787
计量
  • 文章访问数:  5735
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-08
  • 修回日期:  2016-04-07
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map