搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于绝对节点坐标法的大变形柔性梁几种动力学模型研究

章孝顺 章定国 陈思佳 洪嘉振

引用本文:
Citation:

基于绝对节点坐标法的大变形柔性梁几种动力学模型研究

章孝顺, 章定国, 陈思佳, 洪嘉振

Several dynamic models of a large deformation flexible beam based on the absolute nodal coordinate formulation

Zhang Xiao-Shun, Zhang Ding-Guo, Chen Si-Jia, Hong Jia-Zhen
PDF
导出引用
  • 对在平面内大范围转动的大变形柔性梁动力学进行了研究, 基于绝对节点坐标法建立了一种新的大变形柔性梁的非线性动力学模型. 该动力学模型中考虑了柔性梁的轴向拉伸变形和横向弯曲变形, 利用Green-Lagrangian应变张量计算柔性梁的轴向应变及应变能, 利用曲率的精确表达式计算柔性梁的横向弯曲变形能. 运用拉格朗日恒等式给出了柔性梁横向弯曲变形能新的表达式, 该变形能表达式更加简洁, 通过新的变形能表达式得到了新的弹性力模型, 由此得到的动力学方程可以精确地描述柔性梁的几何大变形问题. 通过与高次耦合模型以及ANSYS中BEAM188非线性梁单元模型的比较, 验证了本模型在计算大变形时的正确性以及高次耦合模型在处理大变形问题时的不足. 进一步研究发现, 新的广义弹性力模型可以适当地简化, 给出了两种简化模型, 根据不同模型的计算效率以及计算精度的比较确定了不同模型的适用范围.
    With the development of space technology, flexible appendages such as lightweight manipulators and satellite antennas, often appear in spacecrafts. Usually, the large overall motion of the flexible appendage will bring about large deformation problem. And there is a strong nonlinear coupling between the large overall motion and deformation of the flexible appendage, which brings about a large challenge to the precise control of the spacecraft. Dynamics of a rotating flexible planar beam with large deformation is investigated in this paper. A new nonlinear dynamic model of a flexible beam with large deformation is established based on an absolute node coordinate formulation (ANCF). The longitudinal and bending deformations of the flexible beam are both considered in the model. The longitudinal strain energy and bending strain energy of the beam can be calculated by using Green-Lagrangian strain tensor and the exact expression of the flexible beam curvature, respectively. A new concise expression of the bending deformation energy can be obtained by using the Lagrange identical equation. The new elastic force model is derived from the new expression of the deformation energy. The dynamic equations of the present model can precisely deal with the large deformation problem of flexible beams. Then, simulation results from three dynamic models, including the ANCF model, the high order coupling model (HOC model), and the BEAM188 model in ANSYS, are compared to prove the validity of the ANCF model proposed in this paper. And we can also find the deficiency of the HOC model from the simulation. Further study shows that the new generalized elastic force model can be simplified properly. Two simplified models are presented in this paper. The applicabilities of the simplified models are pointed out from the viewpoints of computational efficiency and accuracy. A dimensionless parameter denoted as is introduced to describe the extent to which a flexible beam pendulum undergoing free falling motion is deformed. The deformation of the flexible beam increases as increases. Considering the calculating efficiency of the dynamic model, when is small, simplified model I is chosen preferentially; when is big, simplified model Ⅱ is adopted preferentially.
      通信作者: 章定国, zhangdg419@mail.njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11272155, 11302192, 11132007)和江苏省333工程(批准号: BRA2011172)资助的课题.
      Corresponding author: Zhang Ding-Guo, zhangdg419@mail.njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272155, 11302192, 11132007), and the 333 Project of Jiangsu Province, China (Grant No. BRA2011172).
    [1]

    Kane T R, Ryan R R, Banerjee A K 1987 J. Guid. Control Dyn. 10 139

    [2]

    Banerjee A K, Kane T R 1989 J. Appl. Mech. 56 887

    [3]

    Liu J Y, Hong J Z 2004 J. Sound Vib. 278 1147

    [4]

    Liu J Y, Li B, Hong J Z 2006 Chin. J. Theor. Appl. Mech. 38 276 (in Chinese) [刘锦阳, 李彬, 洪嘉振 2006 力学学报 38 276]

    [5]

    Cai G P, Hong J Z Yang S X 2005 Mech. Res. Commun. 32 173

    [6]

    He X S, Deng F Y, Wu G Y, Wang R 2010 Acta Phys. Sin. 59 25 (in Chinese) [和兴锁, 邓峰岩, 吴根勇, 王睿 2010 59 25]

    [7]

    He X S, Li X H, Deng F Y 2011 Acta Phys. Sin. 60 024502 (in Chinese) [和兴锁, 李雪华, 邓峰岩 2011 60 024502]

    [8]

    Chen S J, Zhang D G, Hong J Z 2013 Chin. J. Theor. Appl. Mech. 45 251 (in Chinese) [陈思佳, 章定国, 洪嘉振 2013 力学学报 45 251]

    [9]

    Fan J H, Zhang D G 2014 Acta Phys. Sin. 63 154501 (in Chinese) [范纪华, 章定国 2014 63 154501]

    [10]

    Simo J C, Quoc L V 1986 Comput. Methods Appl. Mech. Engineer. 58 79

    [11]

    Qi Z H, Fang H Q, Zhang Z G, Wang L 2014 Appl. Math. Mech. 35 498 (in Chinese) [齐朝晖, 方慧青, 张志刚, 王刚 2014 应用数学和力学 35 498]

    [12]

    Shabana A A, Hussien H A, Escalona J L 1998 J. Mech. Design 120 188

    [13]

    Berzeri M, Shabana A A 2000 J. Sound Vib. 235 539

    [14]

    Gerstmayr J, Irschik H 2008 J. Sound Vib. 318 461

    [15]

    Peng L, Shabana A A 2010 Nonlinear Dyn. 61 193

    [16]

    Tian Q, Zhang Y, Chen L, Yang J J 2010 Nonlinear Dyn. 60 489

    [17]

    Liu C, Tian Q, Hu H Y 2012 Nonlinear Dyn. 70 1903

    [18]

    Nachbagauer K, Gruber P, Gerstmayr J 2013 J. Computat. Nonlinear Dyn. 8 021004

    [19]

    Shabana A A 2015 J. Computat. Nonlinear Dyn. 10 024504

    [20]

    Chung J, Yoo H H 2002 J. Sound Vib. 249 147

  • [1]

    Kane T R, Ryan R R, Banerjee A K 1987 J. Guid. Control Dyn. 10 139

    [2]

    Banerjee A K, Kane T R 1989 J. Appl. Mech. 56 887

    [3]

    Liu J Y, Hong J Z 2004 J. Sound Vib. 278 1147

    [4]

    Liu J Y, Li B, Hong J Z 2006 Chin. J. Theor. Appl. Mech. 38 276 (in Chinese) [刘锦阳, 李彬, 洪嘉振 2006 力学学报 38 276]

    [5]

    Cai G P, Hong J Z Yang S X 2005 Mech. Res. Commun. 32 173

    [6]

    He X S, Deng F Y, Wu G Y, Wang R 2010 Acta Phys. Sin. 59 25 (in Chinese) [和兴锁, 邓峰岩, 吴根勇, 王睿 2010 59 25]

    [7]

    He X S, Li X H, Deng F Y 2011 Acta Phys. Sin. 60 024502 (in Chinese) [和兴锁, 李雪华, 邓峰岩 2011 60 024502]

    [8]

    Chen S J, Zhang D G, Hong J Z 2013 Chin. J. Theor. Appl. Mech. 45 251 (in Chinese) [陈思佳, 章定国, 洪嘉振 2013 力学学报 45 251]

    [9]

    Fan J H, Zhang D G 2014 Acta Phys. Sin. 63 154501 (in Chinese) [范纪华, 章定国 2014 63 154501]

    [10]

    Simo J C, Quoc L V 1986 Comput. Methods Appl. Mech. Engineer. 58 79

    [11]

    Qi Z H, Fang H Q, Zhang Z G, Wang L 2014 Appl. Math. Mech. 35 498 (in Chinese) [齐朝晖, 方慧青, 张志刚, 王刚 2014 应用数学和力学 35 498]

    [12]

    Shabana A A, Hussien H A, Escalona J L 1998 J. Mech. Design 120 188

    [13]

    Berzeri M, Shabana A A 2000 J. Sound Vib. 235 539

    [14]

    Gerstmayr J, Irschik H 2008 J. Sound Vib. 318 461

    [15]

    Peng L, Shabana A A 2010 Nonlinear Dyn. 61 193

    [16]

    Tian Q, Zhang Y, Chen L, Yang J J 2010 Nonlinear Dyn. 60 489

    [17]

    Liu C, Tian Q, Hu H Y 2012 Nonlinear Dyn. 70 1903

    [18]

    Nachbagauer K, Gruber P, Gerstmayr J 2013 J. Computat. Nonlinear Dyn. 8 021004

    [19]

    Shabana A A 2015 J. Computat. Nonlinear Dyn. 10 024504

    [20]

    Chung J, Yoo H H 2002 J. Sound Vib. 249 147

  • [1] 郭静, 吴奇, 孙力玲. 抵御大变形超导体的发现.  , 2023, 72(23): 237401. doi: 10.7498/aps.72.20231341
    [2] 陈康, 沈煜年. 软体机器人用多孔聚合物水凝胶的摩擦接触非线性行为.  , 2021, 70(12): 120201. doi: 10.7498/aps.70.20202134
    [3] 张大羽, 罗建军, 郑银环, 袁建平. 基于旋转场曲率的二维剪切梁单元建模.  , 2017, 66(11): 114501. doi: 10.7498/aps.66.114501
    [4] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究.  , 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [5] 陈大伟, 孙海权, 王裴, 蔚喜军, 马东军. 二维拉格朗日坐标系下气粒混合双向耦合对激波流场影响的计算.  , 2016, 65(8): 084703. doi: 10.7498/aps.65.084703
    [6] 第伍旻杰, 胡晓棉. 高应变率压缩下纳米孔洞对金属铝塑性变形的影响研究.  , 2015, 64(17): 170201. doi: 10.7498/aps.64.170201
    [7] 郝世峰, 楼茂园, 杨诗芳, 李超, 孔照林, 裘薇. 干斜压大气拉格朗日原始方程组的半解析解法和非线性密度流数值试验.  , 2015, 64(19): 194702. doi: 10.7498/aps.64.194702
    [8] 宋端, 刘畅, 郭永新. 高阶非完整约束系统嵌入变分恒等式的积分变分原理.  , 2013, 62(9): 094501. doi: 10.7498/aps.62.094501
    [9] 范洪义, 展德会, 于文健, 周军. 厄米多项式算符的新恒等式及其在量子压缩中的应用.  , 2012, 61(11): 110302. doi: 10.7498/aps.61.110302
    [10] 侯祥林, 郑夕健, 张良, 刘铁林. 薄板弯曲大变形高阶非线性偏微分方程推导与优化算法研究.  , 2012, 61(18): 180201. doi: 10.7498/aps.61.180201
    [11] 陶为俊, 浣石. 沿时间逐步求解应力的拉格朗日分析方法研究.  , 2012, 61(20): 200703. doi: 10.7498/aps.61.200703
    [12] 周南润, 龚黎华, 贾芳. 基于双模相干-纠缠态表象的算符恒等式构造法.  , 2009, 58(4): 2179-2183. doi: 10.7498/aps.58.2179
    [13] 隆正文, 李子平. 高阶微商系统中正则Ward恒等式和Abel规范理论中动力学质量的产生.  , 2004, 53(7): 2100-2105. doi: 10.7498/aps.53.2100
    [14] 李子平. 广义Noether恒等式及其应用.  , 1986, 35(4): 553-555. doi: 10.7498/aps.35.553
    [15] 赵保恒, 范洪义. 规范条件和Slavnov-Taylor恒等式的破坏.  , 1977, 26(6): 531-534. doi: 10.7498/aps.26.531
    [16] 杨立铭, 曾谨言. 大变形核中对力对内部激发的影响.  , 1964, 20(9): 846-862. doi: 10.7498/aps.20.846
    [17] 翁培焜, 严国光, 朱善根, 陈师平, 何宪, 王潄芳, 郑林生. Tb160的衰变—希土元素大变形核的激发能级的研究(Ⅲ).  , 1963, 19(8): 524-537. doi: 10.7498/aps.19.524
    [18] 严国光. 大变形区的两种核模型.  , 1962, 18(11): 605-608. doi: 10.7498/aps.18.605
    [19] 王朝俊, 苏宏渊, 何宪, 翁培焜, 梅镇岳. Yb169的衰变——稀土元素大变形核的激发能级的研究(Ⅰ).  , 1961, 17(9): 395-410. doi: 10.7498/aps.17.395
    [20] 谢宽仲, 王朝俊, 朱善根, 郑林生. Gd159的衰变——稀土元素大变形核的激发能级的研究(Ⅱ).  , 1961, 17(9): 411-424. doi: 10.7498/aps.17.411
计量
  • 文章访问数:  9340
  • PDF下载量:  444
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-10
  • 修回日期:  2015-12-27
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map