搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于离散元方法的颗粒材料缓冲性能及影响因素分析

季顺迎 樊利芳 梁绍敏

引用本文:
Citation:

基于离散元方法的颗粒材料缓冲性能及影响因素分析

季顺迎, 樊利芳, 梁绍敏

Buffer capacity of granular materials and its influencing factors based on discrete element method

Ji Shun-Ying, Fan Li-Fang, Liang Shao-Min
PDF
导出引用
  • 在冲击荷载作用下, 颗粒材料通过颗粒间的摩擦及非弹性碰撞可有效进行能量耗散实现缓冲作用. 本文采用离散元方法对冲击载荷下颗粒材料的缓冲过程进行数值分析, 研究不同厚度下颗粒材料的缓冲性能. 计算结果表明: 颗粒层厚度H是影响颗粒材料缓冲性能的关键因素, 并存在一个临界厚度Hc. 当H Hc时, 冲击力随H的增加而降低; 当H Hc时, 冲击力对H的变化不敏感并趋于稳定值. 此外, 在不同颗粒摩擦系数和初始密集度下对缓冲过程的离散元分析表明, 光滑和疏松颗粒材料具有更好的缓冲性能. 最后, 对颗粒材料在冲击过程中的力链结构和底板的压力分布进行了讨论, 以揭示颗粒材料缓冲性能的内在机理.
    As a typical energy dissipation system, granular material acts as a buffer under the action of impact load, with absorbing and dissipating energy effectively through the sliding friction and viscous contacts between particles. In this paper we study the buffer capacity of granular material under impact load, by the discrete element method (DEM). The spherical elements are filled randomly into a rigid cylinder under the action of gravity. A spherical projectile with a certain initial velocity drops into the granular bed from a given height. The impact loads on the projectile and the rigid bottom plate of cylinder are both obtained with DEM simulations. The simulated impact loads on the bottom plate are compared well with the physical experiment data. The influences of granular thickness, sliding friction and initial concentration on buffer capacity are investigated under the impact of spherical projectile. The DEM results show that granular thickness H is a key factor for buffer capacity. In the DEM simulations, the impact load on bottom plate presents unique characteristics under various granular thickness values. With granular thickness increasing from zero, a transition from one peak to two peaks takes place, then the two peaks return to one peak in the time curve of impact load. The evolution of impact load peak with its temporal interval is discussed. A critical thickness Hc is obtained. The impact force decreases with the increase of granular thickness when H Hc, but is independent of the granular thickness when H Hc. Moreover, the impact forces are simulated under various sliding friction coefficients and initial concentrations. It is found that the smooth and loose granular material has more effective buffer capacity. Finally, the spatial structures of force chains and the distribution of impact forces on bottom plate are discussed to reveal the mechanism of buffer properties of granular material on a micro scale.
      通信作者: 季顺迎, jisy@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11572067,U1234209)和中央高校基本科研业务费(批准号:DUT15ZD105)资助的课题.
      Corresponding author: Ji Shun-Ying, jisy@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11572067, U1234209) and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT15ZD105).
    [1]

    Stone M B, Bernstein D P, Barry R, Pelc M D, Tsui Y K, Schiffer P 2004 Nature 427 503

    [2]

    Geng J, Howell D, Longhi E, Behringer R P, Reydellet G, Vanel L, Clment E, Luding S 2001 Phys. Rev. Lett. 87 035506

    [3]

    Yu T, Zhang G H, Sun Q C, Zhao X D, Ma W B 2015 Acta Phys. Sin. 64 044501 (in Chinese) [余田, 张国华, 孙其诚, 赵雪丹, 马文波 2015 64 044501]

    [4]

    Du Y C, Wang S L, Zhang J L 2010 Int. J. Impact. Eng. 7 309

    [5]

    Toiya M, Hettinga J, Losert W 2007 Granular Matter 9 323

    [6]

    Zhao Z, Liu C S, Brogliato B 2008 Phys. Rev. E 78 031307

    [7]

    Ji S Y, Li P F, Chen X D 2012 Acta Phys. Sin. 61 301 (in Chinese) [季顺迎, 李鹏飞, 陈晓东 2012 61 301]

    [8]

    Ruiz-Suarez J C 2013 Rep. Prog. Phys. 76 066601

    [9]

    Clark A H, Petersen A J, Kondic L, Behringe R P 2015 Phys. Rev. Lett. 114 144502

    [10]

    Uehara J S, Ambroso M A, Ojha R P, Durian D J 2003 Phys. Rev. Lett. 90 194301

    [11]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Modern Phys. 68 1259

    [12]

    Kondic L, Fang X, Losert W, OHern C S, Behringer R P 2012 Phys. Rev. E 85 011305.

    [13]

    Nordstrom K N, Lim E, Harrington M, Losert W 2014 Phys. Rew. Lett. 112 228002

    [14]

    Pacheco-Vazquez F, Ruiz-Suarez J C 2011 Phys. Rev. Lett. 107 218001

    [15]

    Omidvar M, Iskander M, Bless S 2014 Int. J. Impact Eng. 66 60

    [16]

    Ambroso M A, Santore C R, Abate A R, Durian D J 2005 Phys. Rev. E 71 051305

    [17]

    Walsh A M, Holloway K E, Habdas P, de Bruyn J R 2003 Phys. Rev. Lett. 91 104301

    [18]

    Wang D, Ye X, and Zheng X 2012 Euro. Phys. J. E 35 7

    [19]

    Pacheco-Vazquez F, Caballero-Robledo G A, Solano-Altamirano J M, Altshuler E, Batista-Leyva A J, Ruiz-Sua rez J C 2011 Phys. Rev. Lett. 106 218001

    [20]

    Goldman D I. Umbanhowar P 2008 Phys. Rev. E 77 021308

    [21]

    Ciamarra M P, Lara A H, Lee A T, Golman D I, Vishik I, Swinney L 2004 Phys. Rev. Lett. 92 194301

    [22]

    Katsuragi H, Durian D J. 2007 Nature Phys. 3 420

    [23]

    Ye X Y, Wang D M, Zheng Z J 2012 Phys. Rev. E 86 061304

    [24]

    Peng Z, Xu X, Lu K and Hou M 2009 Phys. Rev. E 80 021301

    [25]

    Albert I, Sample J G, Morss A J, Rajagopalan S, Barabasi A-L, Schiffer P 2001 Phys. Rev. E 64 061303

    [26]

    Hou M, Peng Z, Liu R, Lu K, Chan C K 2005 Phys. Rev. E 72 062301

    [27]

    Takehara Y, Fujimoto S, Okumura K 2010 Epl-Europhys. Lett. 92 44003

    [28]

    Nishida M, Tanaka Y 2010 Granular Matter 12 357

    [29]

    Tanaka K, Nishida M, Kunimochi T, Takagi T 2002 Powder Technol. 124 160

    [30]

    Birch S P D, Manga M, Delbridge B, Chamberlain M 2014 Phys. Rev. E 90 032208

    [31]

    Brzinski III T A, Schug J, Mao K, Durian D J 2015 Phys. Rev. E 91 022202

    [32]

    Awasthi A, Wang Z Y, Broadhurst N, Geubelle P 2015 Granular Matter 17 21

    [33]

    Sakamura Y, Komaki H 2012 Shock Waves 22 57

    [34]

    Stone M B, Barry R, Bernstein D P, Pelc M D, Tsui Y K, Schiffer P 2004 Phys. Rev. E 70 041301

    [35]

    Peng Z, Jiang Y M, Liu R, Hou M Y 2013 Acta Phys. Sin. 62 024502 (in Chinese) [彭政, 蒋亦民, 刘锐, 厚美瑛. 2013 62 024502]

    [36]

    Xue K, Bai C 2011 Phys. Rev. E 83 021305

    [37]

    Bourrier F, Nicot F, Darve F 2008 Granular Matter 10 415

    [38]

    Chen Q, Hou M Y 2014 Chin. Phys. B 23 074501

    [39]

    Jiang Y J, Zhao Y, Towhata I, Liu D X 2015 Powder Technol. 270 53

    [40]

    Muller P, Poschel T 2011 Phys. Rev. E 84 021302

    [41]

    Chung Y C, Ooi J Y 2011 Granular Matter 13 643

    [42]

    Zhang G H, Sun Q C, Shi Z P, Feng X, Gu Q, Jin F 2014 Chin. Phys. B 23 076301

    [43]

    Oger L, Ammi M, Valance A, Beladjine D 2005 Eur. Phys. J. E 17 467

    [44]

    Crassous J, Beladjine D, Valance A 2007 Phys. Rev. Lett. 99 248001

    [45]

    Abd-Elhady M S, Abd-Elhady S, Rindt C C M, van Steenhoven A A 2010 Adv. Powder Technol. 21 150

    [46]

    Tiwari M, Mohan T R K, Sen S 2014 Phys. Rev. E 90 062202

    [47]

    Loranca-Ramos F E, Carrillo-Estrada J L, Pacheco-Vazquez F 2015 Phys. Rev. Lett. 115 028001

    [48]

    Wada K, Senshu H, Matsui T 2006 Icarus 180 528

    [49]

    Ciamarra M P, Lara A H, Lee A T, Goldman D I, Vishik I, Swinney H L 2004 Phys. Rev. Lett. 92 194301

    [50]

    Nelson E L, Katsuragi H, Mayor P, Durian D J 2008 Phys. Rev. Lett. 101 068001

    [51]

    Li Y, Dove A, Curtis J S, Colwell J E 2016 Powder Technol. 288 303

    [52]

    Ramirez R, Poschel T, Brilliantov N V, Schwager T 1999 Phys. Rev. E 60 4465

    [53]

    Park J, Song J J 2009 Int. J. Rock Mech. Min. 46 1315

    [54]

    Maio F P D, Renzo A D 2005 Chem. Eng. Sci. 60 1303

    [55]

    Kremmer M, Favier J F 2001 Int. J. Numer. Meth. Eng. 51 1407

    [56]

    Yan Y, Ji S Y 2009 Int. J. Numer. Anal. Met. 34 978

    [57]

    Nishida M, Okumura M., Tanaka K 2010 Granular Matter 12 337

    [58]

    Tapia F, Espindola D, Hamm E, Melo F 2013 Phys. Rev. E 87 014201

    [59]

    Midi G D R 2004 Eur. Phys. J. E 14 341

    [60]

    Umbanhowar P, Goldman D I 2010 Phys. Rev. E 82 010301

    [61]

    Bi Z W, Sun Q C, Liu J G, Jin F 2011 Mech. Eng. 33 10 (in Chinese) [毕忠伟, 孙其诚, 刘建国, 金峰 2011 力学与实践 33 10]

  • [1]

    Stone M B, Bernstein D P, Barry R, Pelc M D, Tsui Y K, Schiffer P 2004 Nature 427 503

    [2]

    Geng J, Howell D, Longhi E, Behringer R P, Reydellet G, Vanel L, Clment E, Luding S 2001 Phys. Rev. Lett. 87 035506

    [3]

    Yu T, Zhang G H, Sun Q C, Zhao X D, Ma W B 2015 Acta Phys. Sin. 64 044501 (in Chinese) [余田, 张国华, 孙其诚, 赵雪丹, 马文波 2015 64 044501]

    [4]

    Du Y C, Wang S L, Zhang J L 2010 Int. J. Impact. Eng. 7 309

    [5]

    Toiya M, Hettinga J, Losert W 2007 Granular Matter 9 323

    [6]

    Zhao Z, Liu C S, Brogliato B 2008 Phys. Rev. E 78 031307

    [7]

    Ji S Y, Li P F, Chen X D 2012 Acta Phys. Sin. 61 301 (in Chinese) [季顺迎, 李鹏飞, 陈晓东 2012 61 301]

    [8]

    Ruiz-Suarez J C 2013 Rep. Prog. Phys. 76 066601

    [9]

    Clark A H, Petersen A J, Kondic L, Behringe R P 2015 Phys. Rev. Lett. 114 144502

    [10]

    Uehara J S, Ambroso M A, Ojha R P, Durian D J 2003 Phys. Rev. Lett. 90 194301

    [11]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Modern Phys. 68 1259

    [12]

    Kondic L, Fang X, Losert W, OHern C S, Behringer R P 2012 Phys. Rev. E 85 011305.

    [13]

    Nordstrom K N, Lim E, Harrington M, Losert W 2014 Phys. Rew. Lett. 112 228002

    [14]

    Pacheco-Vazquez F, Ruiz-Suarez J C 2011 Phys. Rev. Lett. 107 218001

    [15]

    Omidvar M, Iskander M, Bless S 2014 Int. J. Impact Eng. 66 60

    [16]

    Ambroso M A, Santore C R, Abate A R, Durian D J 2005 Phys. Rev. E 71 051305

    [17]

    Walsh A M, Holloway K E, Habdas P, de Bruyn J R 2003 Phys. Rev. Lett. 91 104301

    [18]

    Wang D, Ye X, and Zheng X 2012 Euro. Phys. J. E 35 7

    [19]

    Pacheco-Vazquez F, Caballero-Robledo G A, Solano-Altamirano J M, Altshuler E, Batista-Leyva A J, Ruiz-Sua rez J C 2011 Phys. Rev. Lett. 106 218001

    [20]

    Goldman D I. Umbanhowar P 2008 Phys. Rev. E 77 021308

    [21]

    Ciamarra M P, Lara A H, Lee A T, Golman D I, Vishik I, Swinney L 2004 Phys. Rev. Lett. 92 194301

    [22]

    Katsuragi H, Durian D J. 2007 Nature Phys. 3 420

    [23]

    Ye X Y, Wang D M, Zheng Z J 2012 Phys. Rev. E 86 061304

    [24]

    Peng Z, Xu X, Lu K and Hou M 2009 Phys. Rev. E 80 021301

    [25]

    Albert I, Sample J G, Morss A J, Rajagopalan S, Barabasi A-L, Schiffer P 2001 Phys. Rev. E 64 061303

    [26]

    Hou M, Peng Z, Liu R, Lu K, Chan C K 2005 Phys. Rev. E 72 062301

    [27]

    Takehara Y, Fujimoto S, Okumura K 2010 Epl-Europhys. Lett. 92 44003

    [28]

    Nishida M, Tanaka Y 2010 Granular Matter 12 357

    [29]

    Tanaka K, Nishida M, Kunimochi T, Takagi T 2002 Powder Technol. 124 160

    [30]

    Birch S P D, Manga M, Delbridge B, Chamberlain M 2014 Phys. Rev. E 90 032208

    [31]

    Brzinski III T A, Schug J, Mao K, Durian D J 2015 Phys. Rev. E 91 022202

    [32]

    Awasthi A, Wang Z Y, Broadhurst N, Geubelle P 2015 Granular Matter 17 21

    [33]

    Sakamura Y, Komaki H 2012 Shock Waves 22 57

    [34]

    Stone M B, Barry R, Bernstein D P, Pelc M D, Tsui Y K, Schiffer P 2004 Phys. Rev. E 70 041301

    [35]

    Peng Z, Jiang Y M, Liu R, Hou M Y 2013 Acta Phys. Sin. 62 024502 (in Chinese) [彭政, 蒋亦民, 刘锐, 厚美瑛. 2013 62 024502]

    [36]

    Xue K, Bai C 2011 Phys. Rev. E 83 021305

    [37]

    Bourrier F, Nicot F, Darve F 2008 Granular Matter 10 415

    [38]

    Chen Q, Hou M Y 2014 Chin. Phys. B 23 074501

    [39]

    Jiang Y J, Zhao Y, Towhata I, Liu D X 2015 Powder Technol. 270 53

    [40]

    Muller P, Poschel T 2011 Phys. Rev. E 84 021302

    [41]

    Chung Y C, Ooi J Y 2011 Granular Matter 13 643

    [42]

    Zhang G H, Sun Q C, Shi Z P, Feng X, Gu Q, Jin F 2014 Chin. Phys. B 23 076301

    [43]

    Oger L, Ammi M, Valance A, Beladjine D 2005 Eur. Phys. J. E 17 467

    [44]

    Crassous J, Beladjine D, Valance A 2007 Phys. Rev. Lett. 99 248001

    [45]

    Abd-Elhady M S, Abd-Elhady S, Rindt C C M, van Steenhoven A A 2010 Adv. Powder Technol. 21 150

    [46]

    Tiwari M, Mohan T R K, Sen S 2014 Phys. Rev. E 90 062202

    [47]

    Loranca-Ramos F E, Carrillo-Estrada J L, Pacheco-Vazquez F 2015 Phys. Rev. Lett. 115 028001

    [48]

    Wada K, Senshu H, Matsui T 2006 Icarus 180 528

    [49]

    Ciamarra M P, Lara A H, Lee A T, Goldman D I, Vishik I, Swinney H L 2004 Phys. Rev. Lett. 92 194301

    [50]

    Nelson E L, Katsuragi H, Mayor P, Durian D J 2008 Phys. Rev. Lett. 101 068001

    [51]

    Li Y, Dove A, Curtis J S, Colwell J E 2016 Powder Technol. 288 303

    [52]

    Ramirez R, Poschel T, Brilliantov N V, Schwager T 1999 Phys. Rev. E 60 4465

    [53]

    Park J, Song J J 2009 Int. J. Rock Mech. Min. 46 1315

    [54]

    Maio F P D, Renzo A D 2005 Chem. Eng. Sci. 60 1303

    [55]

    Kremmer M, Favier J F 2001 Int. J. Numer. Meth. Eng. 51 1407

    [56]

    Yan Y, Ji S Y 2009 Int. J. Numer. Anal. Met. 34 978

    [57]

    Nishida M, Okumura M., Tanaka K 2010 Granular Matter 12 337

    [58]

    Tapia F, Espindola D, Hamm E, Melo F 2013 Phys. Rev. E 87 014201

    [59]

    Midi G D R 2004 Eur. Phys. J. E 14 341

    [60]

    Umbanhowar P, Goldman D I 2010 Phys. Rev. E 82 010301

    [61]

    Bi Z W, Sun Q C, Liu J G, Jin F 2011 Mech. Eng. 33 10 (in Chinese) [毕忠伟, 孙其诚, 刘建国, 金峰 2011 力学与实践 33 10]

  • [1] 周毛吉, 李亚举, 钱东斌, 叶晓燕, 林平, 马新文. 粒径对激光驱动颗粒溅射动力学特征的影响.  , 2022, 71(14): 145203. doi: 10.7498/aps.71.20220243
    [2] 于天林, 凡凤仙. 竖直振动激励下颗粒毛细上升行为研究.  , 2022, 71(10): 104501. doi: 10.7498/aps.71.20212333
    [3] 王嗣强, 季顺迎. 椭球颗粒材料在水平转筒内混合特性的超二次曲面离散元分析.  , 2019, 68(23): 234501. doi: 10.7498/aps.68.20191071
    [4] 蒋城露, 王昂, 赵锋, 尚海林, 张明建, 刘福生, 刘其军. 基于三维离散元方法探究奥克托今颗粒落锤撞击点火机理.  , 2019, 68(22): 228301. doi: 10.7498/aps.68.20190993
    [5] 王嗣强, 季顺迎. 基于超二次曲面的颗粒材料缓冲性能离散元分析.  , 2018, 67(9): 094501. doi: 10.7498/aps.67.20172549
    [6] 辛成舟, 马健男, 马静, 南策文. 厚度剪切模式铌酸锂基复合材料的磁电性能优化.  , 2017, 66(6): 067502. doi: 10.7498/aps.66.067502
    [7] 许文祥, 孙洪广, 陈文, 陈惠苏. 软物质系颗粒材料组成、微结构与传输性能之间关联建模综述.  , 2016, 65(17): 178101. doi: 10.7498/aps.65.178101
    [8] 余田, 张国华, 孙其诚, 赵雪丹, 马文波. 垂直振动激励下颗粒材料有效质量和耗散功率的研究.  , 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [9] 李树忱, 平洋, 李术才, 寇强, 马腾飞, 冯丙阳. 基于流形覆盖的岩体宏细观破裂的颗粒离散元法.  , 2014, 63(5): 050202. doi: 10.7498/aps.63.050202
    [10] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究.  , 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [11] 佟建波, 黄茜, 张晓丹, 张存善, 赵颖. 纳米Ag颗粒表面等离子激元对上转换材料光致发光性能影响的研究.  , 2012, 61(4): 047801. doi: 10.7498/aps.61.047801
    [12] 季顺迎, 李鹏飞, 陈晓东. 冲击荷载下颗粒物质缓冲性能的试验研究.  , 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [13] 高红利, 陈友川, 赵永志, 郑津洋. 薄滚筒内二元湿颗粒体系混合行为的离散单元模拟研究.  , 2011, 60(12): 124501. doi: 10.7498/aps.60.124501
    [14] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究.  , 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [15] 宜晨虹, 慕青松, 苗天德. 重力作用下颗粒介质应力链的离散元模拟.  , 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [16] 钟文镇, 何克晶, 周照耀, 夏伟, 李元元. 颗粒离散元模拟中的阻尼系数标定.  , 2009, 58(8): 5155-5161. doi: 10.7498/aps.58.5155
    [17] 赵永志, 江茂强, 徐平, 郑津洋. 颗粒堆内微观力学结构的离散元模拟研究.  , 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [18] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟.  , 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [19] 王庆学, 杨建荣, 魏彦锋. HgCdTe外延薄膜临界厚度的理论分析.  , 2005, 54(12): 5814-5819. doi: 10.7498/aps.54.5814
    [20] 贾云发, 吴杭生. 临界厚度d0和纵场临界电流曲线.  , 1984, 33(5): 684-688. doi: 10.7498/aps.33.684
计量
  • 文章访问数:  7322
  • PDF下载量:  383
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-30
  • 修回日期:  2016-02-03
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map