搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超二次曲面的颗粒材料缓冲性能离散元分析

王嗣强 季顺迎

引用本文:
Citation:

基于超二次曲面的颗粒材料缓冲性能离散元分析

王嗣强, 季顺迎

Discrete element analysis of buffering capacity of non-spherical granular materials based on super-quadric method

Wang Si-Qiang, Ji Shun-Ying
PDF
导出引用
  • 自然界或工业中普遍是由非球形颗粒组成的复杂体系,与球形颗粒相比,非球形颗粒间的高离散和咬合互锁可使冲击载荷引起的能量有效衰减实现缓冲作用.基于连续函数包络的超二次曲面单元能准确地描述非球形颗粒的几何形态,并可精确地计算单元间的接触碰撞作用.本文采用离散元方法对冲击载荷作用下非球形颗粒物质的缓冲性能进行数值分析,并与圆柱体冲击的理论结果和球体冲击的实验结果进行对比验证.在此基础之上,进一步研究了筒底作用力在不同颗粒层厚度和形状等因素影响下的变化规律.计算结果表明:不同颗粒形状都存在一个临界厚度Hc.当H Hc时,缓冲率随H的增加而增加;当H Hc时,缓冲率的变化不再显著并趋于稳定值.此外,减小颗粒表面尖锐度和增加或减小圆柱形和长方形颗粒的长宽比都会提高颗粒材料的缓冲效果.
    Granular system commonly encountered in industry or nature is comprised of non-spherical grains. Comparing with spherical particles, high discretization and interlocking among non-spherical particles can effectively dissipate the system energy and improve the buffer capacity. The superquadric element based on continuous function envelop can form the geometric shape of irregular particles accurately, and then contact collision action between particles can be calculated easily. In this paper, we provide a comprehensive introduction to particle-particle and particle-boundary contact collision. In addition, considering different shapes and surface curvatures under various contact patterns between super-quadric particles, the linear contact force model cannot be applied to the accurate calculation of the contact force, and a corresponding non-linear viscoelastic force model is developed. In this model, the equivalent radius of curvature at a local contact point is adopted to calculate the normal contact force, and the tangential contact force is simplified based on the contact model of spherical elements. To examine the validity of the algorithm and this model, we compare the discrete element analytical results with the analytical results for a single cylinder impacting a flat wall and the previous experimental results for spherical granular material under impact load, and this method is verified by good agreement between the simulated results and the previous experimental results. According to the aforementioned method, we study the buffer capacity of non-spherical particles under impact load by the discrete element method, and the influences of granular thickness and particle shapes on the buffer capacity are discussed. The results show that a critical thickness Hc is obtained for different particle shapes. The buffer capacity is improved with increasing the granular thickness when H Hc, but is independent of the granular thickness and particle shapes when H Hc. Moreover, the impact peak and initial packing fraction increase significantly with increasing the blockiness. Rectangular particles account for the highest packing fraction, and the packing fraction of cylindrical particles is higher than the packing fraction of spherical particles. Therefore, Rectangular particles are more likely to form dense face-face contacts and ordered packing structures with high packing fraction. These denser packings prevent the particles from their relatively moving, and thus reducing the buffering capacity of the particles. Furthermore, the impact peak and initial packing fraction decrease with increasing or reducing the aspect ratio of cylindrical particles and the aspect ratio of rectangular particles. The aspect ratio of particle can be used to adjust the dense packing structure and reduce the stability of the system. It means that the particles have more effective buffer capacity for the non-spherical particle system.
      通信作者: 季顺迎, jisy@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11572067,11772085)资助的课题.
      Corresponding author: Ji Shun-Ying, jisy@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11572067, 11772085).
    [1]

    Katsuragi H, Durian D J 2007 Nat. Phys. 3 420

    [2]

    Kondic L, Fang X, Losert W, OHern C S, Behringer R P 2012 Phys. Rev. E 85 011305

    [3]

    Nordstrom K, Lim E, Harrington M, Losert W 2014 Phys. Rev. Lett. 112 228002

    [4]

    Bester C S, Behringer R P 2017 Phys. Rev. E 95 032906

    [5]

    Seguin A, Bertho Y, Gondret P, Crassous J 2009 Europhys. Lett. 88 44002

    [6]

    Clark A H, Petersen A J, Kondic L, Behringer R P 2015 Phys. Rev. Lett. 114 144502

    [7]

    Deboeuf S, Gondret P, Rabaud M 2008 Environ. Sci. Technol. 42 8459

    [8]

    Deboeuf S, Gondret P, Rabaud M 2009 Phys. Rev. E 79 041306

    [9]

    Ye X Y, Wang D M, Zheng X J 2012 Phys. Rev. E 86 061304

    [10]

    Lu G, Third J R, Mller C R 2015 Chem. Eng. Sci. 127 425

    [11]

    Zhong W, Yu A, Liu X, Tong Z, Zhang H 2016 Powder Technol. 302 108

    [12]

    Zhu H P, Zhou Z Y, Yang R Y, Yu A B 2007 Chem. Eng. Sci. 62 3378

    [13]

    Zhu H P, Zhou Z Y, Yang R Y, Yu A B 2008 Chem. Eng. Sci. 63 5728

    [14]

    Elskamp F, Kruggel-Emden H, Hennig M, Teipel U 2017 Granular Matter 19 46

    [15]

    Zhao S, Zhang N, Zhou X, Zhang L 2017 Powder Technol. 310 175

    [16]

    Kruggel-Emden H, Rickelt S, Wirtz S, Scherer V 2008 Powder Technol. 188 153

    [17]

    Li C Q, Xu W J, Meng Q S 2015 Powder Technol. 286 478

    [18]

    Zeng Y, Jia F, Zhang Y, Meng X, Han Y, Wang H 2017 Powder Technol. 313 112

    [19]

    Galindo-Torres S A, Pedroso D M 2010 Phys. Rev. E 81 061303

    [20]

    Toson P, Khinast J G 2017 Powder Technol. 313 353

    [21]

    Govender N, Wilke D N, Pizette P, Abriak N E 2018 Appl. Math. Comput. 319 318

    [22]

    Lu G, Third J R, Mller C R 2012 Chem. Eng. Sci. 78 226

    [23]

    Cui Z Q, Chen Y C, Zhao Y Z, Hua Z L, Liu X, Zhou C L 2013 Chin. J. Computat. Mech. 30 854 (in Chinese) [崔泽群, 陈友川, 赵永志, 花争立, 刘骁, 周池楼 2013 计算力学学报 30 854]

    [24]

    Cleary P W, Sinnott M D, Morrison R D, Cummins S, Delaney G W 2017 Miner. Eng. 100 49

    [25]

    Di Renzo A, Di Maio F P 2004 Chem. Eng. Sci. 59 525

    [26]

    Liu S D, Zhou Z Y, Zou R P, Pinson D, Yu A B 2014 Powder Technol. 253 70

    [27]

    Goldman D I, Umbanhowar P 2008 Phys. Rev. E 77 021308

    [28]

    Vet S J D, Bruyn J R D 2012 Granular Matter 14 661

    [29]

    Clark A H, Petersen A J, Behringer R P 2014 Phys. Rev. E 89 012201

    [30]

    Clark A H, Kondic L, Behringer R P 2016 Phys. Rev. E 93 050901

    [31]

    Ji S Y, Li P F, Chen X D 2012 Acta Phys. Sin. 61 184703 (in Chinese) [季顺迎, 李鹏飞, 陈晓东 2012 61 184703]

    [32]

    Ji S Y, Fan L F, Liang S M 2016 Acta Phys. Sin. 65 104501 (in Chinese) [季顺迎, 樊利芳, 梁绍敏 2016 65 104501]

    [33]

    Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667 (in Chinese) [孙其诚, 王光谦 2008 57 4667]

    [34]

    Peng Z, Jiang Y M, Liu R, Hou M Y 2013 Acta Phys. Sin. 62 024502 (in Chinese) [彭政, 蒋亦民, 刘锐, 厚美瑛 2013 62 024502]

    [35]

    Barr A H 1981 IEEE Comput. Graph. Appl. 1 11

    [36]

    Stenzel O, Salzer M, Schmidt V, Cleary P W, Delaney G W 2014 Granular Matter 16 457

    [37]

    Delaney G W, Cleary P W 2010 Europhys. Lett. 89 34002

    [38]

    Portal R, Dias J, de Sousa L 2010 Arch. Mech. Eng. 57 165

    [39]

    Wellmann C, Lillie C, Wriggers P 2008 Eng. Computat. 25 432

    [40]

    Podlozhnyuk A, Pirker S, Kloss C 2017 Comp. Part. Mech. 4 101

    [41]

    Goldman R 2005 Comput. Aided Geomet. Desig. 22 632

    [42]

    Gan J Q, Zhou Z Y, Yu A B 2017 Powder Technol. 320 610

    [43]

    Kremmer M, Favier J F 2001 Int. J. Numer. Meth. Eng. 51 1407

    [44]

    Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C 2010 Chem. Eng. Sci. 65 5863

  • [1]

    Katsuragi H, Durian D J 2007 Nat. Phys. 3 420

    [2]

    Kondic L, Fang X, Losert W, OHern C S, Behringer R P 2012 Phys. Rev. E 85 011305

    [3]

    Nordstrom K, Lim E, Harrington M, Losert W 2014 Phys. Rev. Lett. 112 228002

    [4]

    Bester C S, Behringer R P 2017 Phys. Rev. E 95 032906

    [5]

    Seguin A, Bertho Y, Gondret P, Crassous J 2009 Europhys. Lett. 88 44002

    [6]

    Clark A H, Petersen A J, Kondic L, Behringer R P 2015 Phys. Rev. Lett. 114 144502

    [7]

    Deboeuf S, Gondret P, Rabaud M 2008 Environ. Sci. Technol. 42 8459

    [8]

    Deboeuf S, Gondret P, Rabaud M 2009 Phys. Rev. E 79 041306

    [9]

    Ye X Y, Wang D M, Zheng X J 2012 Phys. Rev. E 86 061304

    [10]

    Lu G, Third J R, Mller C R 2015 Chem. Eng. Sci. 127 425

    [11]

    Zhong W, Yu A, Liu X, Tong Z, Zhang H 2016 Powder Technol. 302 108

    [12]

    Zhu H P, Zhou Z Y, Yang R Y, Yu A B 2007 Chem. Eng. Sci. 62 3378

    [13]

    Zhu H P, Zhou Z Y, Yang R Y, Yu A B 2008 Chem. Eng. Sci. 63 5728

    [14]

    Elskamp F, Kruggel-Emden H, Hennig M, Teipel U 2017 Granular Matter 19 46

    [15]

    Zhao S, Zhang N, Zhou X, Zhang L 2017 Powder Technol. 310 175

    [16]

    Kruggel-Emden H, Rickelt S, Wirtz S, Scherer V 2008 Powder Technol. 188 153

    [17]

    Li C Q, Xu W J, Meng Q S 2015 Powder Technol. 286 478

    [18]

    Zeng Y, Jia F, Zhang Y, Meng X, Han Y, Wang H 2017 Powder Technol. 313 112

    [19]

    Galindo-Torres S A, Pedroso D M 2010 Phys. Rev. E 81 061303

    [20]

    Toson P, Khinast J G 2017 Powder Technol. 313 353

    [21]

    Govender N, Wilke D N, Pizette P, Abriak N E 2018 Appl. Math. Comput. 319 318

    [22]

    Lu G, Third J R, Mller C R 2012 Chem. Eng. Sci. 78 226

    [23]

    Cui Z Q, Chen Y C, Zhao Y Z, Hua Z L, Liu X, Zhou C L 2013 Chin. J. Computat. Mech. 30 854 (in Chinese) [崔泽群, 陈友川, 赵永志, 花争立, 刘骁, 周池楼 2013 计算力学学报 30 854]

    [24]

    Cleary P W, Sinnott M D, Morrison R D, Cummins S, Delaney G W 2017 Miner. Eng. 100 49

    [25]

    Di Renzo A, Di Maio F P 2004 Chem. Eng. Sci. 59 525

    [26]

    Liu S D, Zhou Z Y, Zou R P, Pinson D, Yu A B 2014 Powder Technol. 253 70

    [27]

    Goldman D I, Umbanhowar P 2008 Phys. Rev. E 77 021308

    [28]

    Vet S J D, Bruyn J R D 2012 Granular Matter 14 661

    [29]

    Clark A H, Petersen A J, Behringer R P 2014 Phys. Rev. E 89 012201

    [30]

    Clark A H, Kondic L, Behringer R P 2016 Phys. Rev. E 93 050901

    [31]

    Ji S Y, Li P F, Chen X D 2012 Acta Phys. Sin. 61 184703 (in Chinese) [季顺迎, 李鹏飞, 陈晓东 2012 61 184703]

    [32]

    Ji S Y, Fan L F, Liang S M 2016 Acta Phys. Sin. 65 104501 (in Chinese) [季顺迎, 樊利芳, 梁绍敏 2016 65 104501]

    [33]

    Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667 (in Chinese) [孙其诚, 王光谦 2008 57 4667]

    [34]

    Peng Z, Jiang Y M, Liu R, Hou M Y 2013 Acta Phys. Sin. 62 024502 (in Chinese) [彭政, 蒋亦民, 刘锐, 厚美瑛 2013 62 024502]

    [35]

    Barr A H 1981 IEEE Comput. Graph. Appl. 1 11

    [36]

    Stenzel O, Salzer M, Schmidt V, Cleary P W, Delaney G W 2014 Granular Matter 16 457

    [37]

    Delaney G W, Cleary P W 2010 Europhys. Lett. 89 34002

    [38]

    Portal R, Dias J, de Sousa L 2010 Arch. Mech. Eng. 57 165

    [39]

    Wellmann C, Lillie C, Wriggers P 2008 Eng. Computat. 25 432

    [40]

    Podlozhnyuk A, Pirker S, Kloss C 2017 Comp. Part. Mech. 4 101

    [41]

    Goldman R 2005 Comput. Aided Geomet. Desig. 22 632

    [42]

    Gan J Q, Zhou Z Y, Yu A B 2017 Powder Technol. 320 610

    [43]

    Kremmer M, Favier J F 2001 Int. J. Numer. Meth. Eng. 51 1407

    [44]

    Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C 2010 Chem. Eng. Sci. 65 5863

  • [1] 成浩, 韩培锋, 苏有文. 基于离散元方法的松散体滑动堆积特性 及影响因素分析.  , 2020, 69(16): 164501. doi: 10.7498/aps.69.20200223
    [2] 王嗣强, 季顺迎. 椭球颗粒材料在水平转筒内混合特性的超二次曲面离散元分析.  , 2019, 68(23): 234501. doi: 10.7498/aps.68.20191071
    [3] 季顺迎, 樊利芳, 梁绍敏. 基于离散元方法的颗粒材料缓冲性能及影响因素分析.  , 2016, 65(10): 104501. doi: 10.7498/aps.65.104501
    [4] 焦杨, 章新喜, 孔凡成, 刘海顺. 湿颗粒聚团碰撞解聚过程的离散元法模拟.  , 2015, 64(15): 154501. doi: 10.7498/aps.64.154501
    [5] 李树忱, 平洋, 李术才, 寇强, 马腾飞, 冯丙阳. 基于流形覆盖的岩体宏细观破裂的颗粒离散元法.  , 2014, 63(5): 050202. doi: 10.7498/aps.63.050202
    [6] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究.  , 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [7] 范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩冬. 非球形气溶胶粒子短波红外散射特性研究.  , 2012, 61(20): 204202. doi: 10.7498/aps.61.204202
    [8] 危卫, 鲁录义, 顾兆林. 风沙运动的电场-流场耦合模型及气固两相流数值模拟.  , 2012, 61(15): 158301. doi: 10.7498/aps.61.158301
    [9] 胡卫强, 刘宗德, 王永田, 夏兴祥. 快冷熔覆法原位合成大厚度铁基非晶复合涂层的研究.  , 2011, 60(2): 027103. doi: 10.7498/aps.60.027103
    [10] 王爽, 郑洲顺, 周文. 粉末高速压制成形过程中的应力波分析.  , 2011, 60(12): 128101. doi: 10.7498/aps.60.128101
    [11] 高红利, 赵永志, 刘格思, 陈友川, 郑津洋. 阻尼对水平滚筒内二元颗粒体系径向分离模式形成的影响.  , 2011, 60(7): 074501. doi: 10.7498/aps.60.074501
    [12] 高红利, 陈友川, 赵永志, 郑津洋. 薄滚筒内二元湿颗粒体系混合行为的离散单元模拟研究.  , 2011, 60(12): 124501. doi: 10.7498/aps.60.124501
    [13] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究.  , 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [14] 戴兵, 罗向东, 王亚伟. 椭圆截面非球形颗粒群的多重光散射.  , 2009, 58(6): 3864-3869. doi: 10.7498/aps.58.3864
    [15] 赵永志, 张宪旗, 刘延雷, 郑津洋. 滚筒内非等粒径二元颗粒体系增混机理研究.  , 2009, 58(12): 8386-8393. doi: 10.7498/aps.58.8386
    [16] 赵永志, 江茂强, 徐平, 郑津洋. 颗粒堆内微观力学结构的离散元模拟研究.  , 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [17] 彭 政, 厚美瑛, 史庆藩, 陆坤权. 颗粒介质的离散态特性研究.  , 2007, 56(2): 1195-1202. doi: 10.7498/aps.56.1195
    [18] 王庆学, 杨建荣, 魏彦锋. HgCdTe外延薄膜临界厚度的理论分析.  , 2005, 54(12): 5814-5819. doi: 10.7498/aps.54.5814
    [19] 许曼华, 魏铭鉴. 非球形颗粒形散函数的计算方法.  , 1997, 46(12): 2389-2393. doi: 10.7498/aps.46.2389
    [20] 贾云发, 吴杭生. 临界厚度d0和纵场临界电流曲线.  , 1984, 33(5): 684-688. doi: 10.7498/aps.33.684
计量
  • 文章访问数:  7082
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-29
  • 修回日期:  2018-01-20
  • 刊出日期:  2018-05-05

/

返回文章
返回
Baidu
map