搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竖直振动激励下颗粒毛细上升行为研究

于天林 凡凤仙

引用本文:
Citation:

竖直振动激励下颗粒毛细上升行为研究

于天林, 凡凤仙

Investigation of granular capillary rising under vertical vibration

Yu Tian-Lin, Fan Feng-Xian
PDF
HTML
导出引用
  • 竖直振动激励下颗粒毛细上升现象为颗粒物料的提升、输运和采集提供了一种全新的技术路径. 然而, 已有颗粒毛细上升行为研究仍存在明显不足, 特别是缺乏对重力加速度、水平振动分量、颗粒粒径分布影响的深入探究. 针对这些问题, 采用离散元方法, 对不同操作条件下颗粒毛细上升现象开展数值模拟研究, 并对颗粒最终毛细上升高度和平均毛细上升速度进行计算分析. 结果表明, 在低重力条件下, 颗粒毛细效应仍能发生, 颗粒最终毛细上升高度和平均毛细上升速度随重力加速度均呈现先增加后减小的趋势; 颗粒最终毛细上升高度对水平振动分量的变化不敏感, 而平均毛细上升速度随水平振动分量的增大而增加; 在平均粒径相等的情况下, 粒径服从高斯分布的颗粒比单一粒径颗粒的最终毛细上升高度最大值对应的临界管径更大, 并且同处于堵塞效应影响的管径区域时平均毛细上升速度也更快.
    The phenomenon of granular capillary rising under vertical vibration provides a novel technical route for hoisting, transporting and collecting granular materials. However, there are still obvious deficiencies in the existing studies of the granular capillary rising behavior, especially the intensive investigation on the effects of gravitational acceleration, horizontal vibration component and particle size distribution are still lacking. To address these problems, the discrete element method is used to numerically simulate the granular capillary rising phenomenon under different operating conditions. The final capillary rising height and average capillary rising velocity of the granular matter are computed and analyzed based on the numerical simulations. The results show that the granular capillarity can also occur under low gravity conditions, and that the final capillary rising height and the average capillary rising velocity first increase and then decrease with the gravitational acceleration. It is also found that the final capillary rising height is insensitive to the variation of horizontal vibrational component, whereas the average capillary rising velocity increases with the augmentation of horizontal vibrational component. Compared with the mono-sized particles, the particles with the same mean size but having a Gaussian size distribution exhibit a maximal capillary rising height at a larger critical tube diameter. Meanwhile, the average capillary rising velocity of the particles having a Gaussian size distribution is faster in the tube diameter range where the granular capillary dynamics for both size distributions is dominated by the jamming effect.
      通信作者: 凡凤仙, fanfengxian@usst.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51976130)和上海市科委科研计划(批准号: 13DZ2260900)资助的课题
      Corresponding author: Fan Feng-Xian, fanfengxian@usst.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51976130) and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 13DZ2260900)
    [1]

    Xing Y, Zheng J, Li J D, Cao Y X, Pan W, Zhang J, Wang Y J 2021 Phys. Rev. Lett. 126 048002Google Scholar

    [2]

    Li Z F, Zeng Z K, Xing Y, Li J D, Zheng J, Mao Q H, Zhang J, Hou M Y, Wang Y J 2021 Sci. Adv. 7 eabe8737Google Scholar

    [3]

    Then H Z, Sekiguchi T, Okumura K 2020 Soft Matter 16 8612Google Scholar

    [4]

    Kogane A, Kuwagi K, Mawatari Y, Mawatari Y, Davoren L, Seville J P K, Parker D J 2020 J. Phys. Commun. 4 075012Google Scholar

    [5]

    van Gerner H J, van der Weele K, van der Meer D, van der Hoef M A 2015 Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 92 042203Google Scholar

    [6]

    Sánchez I, Díaz A A, Guerrero B, Trosel Y, Rojas C 2015 Mech. Res. Commun. 67 1Google Scholar

    [7]

    郭宇, 凡凤仙, 白鹏博, 刘举 2019 上海理工大学学报 41 409Google Scholar

    Guo Y, Fan F X, Bai P B, Lu J 2019 J. Univ. Shanghai for Sci. Technol. 41 409Google Scholar

    [8]

    Sánchez I, Darias J R, Paredes R, Lobb C J, Gutiérrez G 2009 Traffic Granular Flow 545

    [9]

    Liu C P, Wu P, Wang L 2013 Soft Matter 9 4762Google Scholar

    [10]

    张富翁, 王立, 刘传平, 吴平 2014 63 014501Google Scholar

    Zhang F W, Wang L, Liu C P, Wu P 2014 Acta. Phys. Sin. 63 014501Google Scholar

    [11]

    Fan F X, Parteli E J R, Pöschel T 2017 Phys. Rev. Lett. 118 218001Google Scholar

    [12]

    张华腾, 凡凤仙, 王志强 2020 力学学报 52 442Google Scholar

    Zhang H T, Fan F X, Wang Z Q 2020 Chin. J. Theo. Appl. Mech. 52 442Google Scholar

    [13]

    凡凤仙, 王志强, 刘举, 张华腾 2019 力学学报 51 415Google Scholar

    Fan F X, Wang Z Q, Liu J, Zhang H T 2019 Chin. J. Theo. Appl. Mech. 51 415Google Scholar

    [14]

    Fan F X, Liu J, Parteli E J R, Pschel T 2017 EPJ Web of Conferences 140 16008Google Scholar

    [15]

    刘举, 白鹏博, 凡凤仙, 胡晓红 2016 化工进展 35 1956Google Scholar

    Liu J, Bai P B, Fan F X, Hu X H 2016 Chem. Ind. Eng. Prog. 35 1956Google Scholar

    [16]

    Zhang F W, Cronin K, Lin Y H, Miao S, Liu C P, Wang L 2019 Powder Technol. 343 383Google Scholar

    [17]

    Zhang F W, Cronin K, Lin Y, Liu C, Wang L 2018 Powder Technol. 333 421Google Scholar

    [18]

    Zhang F W, Wang L, Liu C P, Wu P 2017 Adv Powder Technol. 28 356Google Scholar

    [19]

    Liu C P, Zhang F W, Wu P, Wang 2014 Powder Technol. 259 137Google Scholar

    [20]

    Kawamoto H, Kubo K, Kikumiya R, Adachi M 2021 J. Aerosp. Eng. 34 04021097Google Scholar

    [21]

    Liu Y, Zhao J H 2015 Chin. Phys. B 24 034502Google Scholar

    [22]

    Xu Y P, Musser J, Li T, Padding J T, Rogers W A 2017 Powder Technol. 320 304Google Scholar

    [23]

    Zhang N, Cheng B, Baoyin H 2019 Appl. Math. Mech. Engl. Ed. 40 127Google Scholar

    [24]

    Brilliantov N V, Spahn F, Hertzsch J M, Pöschel T 1996 Phys. Rev. E 53 5382Google Scholar

    [25]

    Cundall P A, Strack O D 1979 Géotechnique 29 47Google Scholar

    [26]

    Ai J, Chen J F, Rotter J M, Ooi J Y 2011 Powder Technol. 206 269Google Scholar

    [27]

    Kloss C, Goniva C, Hager A, Amberger S, Pirker S 2012 Prog. Comput. Fluid Dyn. 12 140Google Scholar

    [28]

    Shäfer J, Dippel S, Wolf D E 1996 J. Phys. I 6 5Google Scholar

    [29]

    赵永志, 程易, 郑津洋 2009 计算力学学报 26 239

    Zhao Y Z, Cheng Y, Zheng J Y 2009 Chin. J. Comput. Mech. 26 239

    [30]

    Ng T T, Zhou W, Ma G, Chang X L 2014 J. Eng. Mech. 141 04014167Google Scholar

  • 图 1  颗粒系统示意图

    Fig. 1.  Schematic diagram of granular system.

    图 2  不同重力加速度下颗粒毛细上升动力学过程

    Fig. 2.  Dynamic process of granular capillary rising under different gravitational accelerations.

    图 3  毛细上升高度随时间的演变

    Fig. 3.  Evolution of capillary rising height with time.

    图 4  最终毛细上升高度和平均毛细上升速度随重力加速度的变化

    Fig. 4.  Dependence of final capillary rising height and average capillary rising velocity on gravitational acceleration.

    图 5  最终毛细上升高度和平均毛细上升速度随水平振动分量的变化

    Fig. 5.  Dependence of final capillary rising height and average capillary rising velocity on horizontal vibrational component.

    图 6  不同粒径分布下最终毛细上升高度和平均毛细上升速度随管径的变化

    Fig. 6.  Dependence of final capillary rising height and average capillary rising velocity on tube diameter under different particle size distribution.

    表 1  数值模拟参数

    Table 1.  Parameters used in numerical simulations

    参数符号数值
    容器内径/mmD28.2
    管内径/mmd8
    颗粒数目Np200000
    管壁厚度/mmδ0.6
    管底面距容器底面的距离/mmL30
    颗粒密度/(kg⋅m–3)ρp2500
    杨氏模量/MPaY10
    泊松比υ0.25
    恢复系数ε0.5
    颗粒间滑动摩擦系数μpp,s0.8
    颗粒间滚动摩擦系数μpp,r0.1
    颗粒-壁面间滑动摩擦系数μpw,s0.58
    颗粒-壁面间滚动摩擦系数μpw,r0.05
    振幅/mmAz12.42
    频率/Hzf10
    下载: 导出CSV
    Baidu
  • [1]

    Xing Y, Zheng J, Li J D, Cao Y X, Pan W, Zhang J, Wang Y J 2021 Phys. Rev. Lett. 126 048002Google Scholar

    [2]

    Li Z F, Zeng Z K, Xing Y, Li J D, Zheng J, Mao Q H, Zhang J, Hou M Y, Wang Y J 2021 Sci. Adv. 7 eabe8737Google Scholar

    [3]

    Then H Z, Sekiguchi T, Okumura K 2020 Soft Matter 16 8612Google Scholar

    [4]

    Kogane A, Kuwagi K, Mawatari Y, Mawatari Y, Davoren L, Seville J P K, Parker D J 2020 J. Phys. Commun. 4 075012Google Scholar

    [5]

    van Gerner H J, van der Weele K, van der Meer D, van der Hoef M A 2015 Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 92 042203Google Scholar

    [6]

    Sánchez I, Díaz A A, Guerrero B, Trosel Y, Rojas C 2015 Mech. Res. Commun. 67 1Google Scholar

    [7]

    郭宇, 凡凤仙, 白鹏博, 刘举 2019 上海理工大学学报 41 409Google Scholar

    Guo Y, Fan F X, Bai P B, Lu J 2019 J. Univ. Shanghai for Sci. Technol. 41 409Google Scholar

    [8]

    Sánchez I, Darias J R, Paredes R, Lobb C J, Gutiérrez G 2009 Traffic Granular Flow 545

    [9]

    Liu C P, Wu P, Wang L 2013 Soft Matter 9 4762Google Scholar

    [10]

    张富翁, 王立, 刘传平, 吴平 2014 63 014501Google Scholar

    Zhang F W, Wang L, Liu C P, Wu P 2014 Acta. Phys. Sin. 63 014501Google Scholar

    [11]

    Fan F X, Parteli E J R, Pöschel T 2017 Phys. Rev. Lett. 118 218001Google Scholar

    [12]

    张华腾, 凡凤仙, 王志强 2020 力学学报 52 442Google Scholar

    Zhang H T, Fan F X, Wang Z Q 2020 Chin. J. Theo. Appl. Mech. 52 442Google Scholar

    [13]

    凡凤仙, 王志强, 刘举, 张华腾 2019 力学学报 51 415Google Scholar

    Fan F X, Wang Z Q, Liu J, Zhang H T 2019 Chin. J. Theo. Appl. Mech. 51 415Google Scholar

    [14]

    Fan F X, Liu J, Parteli E J R, Pschel T 2017 EPJ Web of Conferences 140 16008Google Scholar

    [15]

    刘举, 白鹏博, 凡凤仙, 胡晓红 2016 化工进展 35 1956Google Scholar

    Liu J, Bai P B, Fan F X, Hu X H 2016 Chem. Ind. Eng. Prog. 35 1956Google Scholar

    [16]

    Zhang F W, Cronin K, Lin Y H, Miao S, Liu C P, Wang L 2019 Powder Technol. 343 383Google Scholar

    [17]

    Zhang F W, Cronin K, Lin Y, Liu C, Wang L 2018 Powder Technol. 333 421Google Scholar

    [18]

    Zhang F W, Wang L, Liu C P, Wu P 2017 Adv Powder Technol. 28 356Google Scholar

    [19]

    Liu C P, Zhang F W, Wu P, Wang 2014 Powder Technol. 259 137Google Scholar

    [20]

    Kawamoto H, Kubo K, Kikumiya R, Adachi M 2021 J. Aerosp. Eng. 34 04021097Google Scholar

    [21]

    Liu Y, Zhao J H 2015 Chin. Phys. B 24 034502Google Scholar

    [22]

    Xu Y P, Musser J, Li T, Padding J T, Rogers W A 2017 Powder Technol. 320 304Google Scholar

    [23]

    Zhang N, Cheng B, Baoyin H 2019 Appl. Math. Mech. Engl. Ed. 40 127Google Scholar

    [24]

    Brilliantov N V, Spahn F, Hertzsch J M, Pöschel T 1996 Phys. Rev. E 53 5382Google Scholar

    [25]

    Cundall P A, Strack O D 1979 Géotechnique 29 47Google Scholar

    [26]

    Ai J, Chen J F, Rotter J M, Ooi J Y 2011 Powder Technol. 206 269Google Scholar

    [27]

    Kloss C, Goniva C, Hager A, Amberger S, Pirker S 2012 Prog. Comput. Fluid Dyn. 12 140Google Scholar

    [28]

    Shäfer J, Dippel S, Wolf D E 1996 J. Phys. I 6 5Google Scholar

    [29]

    赵永志, 程易, 郑津洋 2009 计算力学学报 26 239

    Zhao Y Z, Cheng Y, Zheng J Y 2009 Chin. J. Comput. Mech. 26 239

    [30]

    Ng T T, Zhou W, Ma G, Chang X L 2014 J. Eng. Mech. 141 04014167Google Scholar

  • [1] 杜清馨, 孙其诚, 丁红胜, 张国华, 范彦丽, 安飞飞. 垂直振动下干湿颗粒样品的体积模量与耗散.  , 2022, 71(18): 184501. doi: 10.7498/aps.71.20220329
    [2] 牛晓娜, 张国华, 孙其诚, 赵雪丹, 董远湘. 二维有摩擦颗粒体系振动态密度与玻色峰的研究.  , 2016, 65(3): 036301. doi: 10.7498/aps.65.036301
    [3] 季顺迎, 樊利芳, 梁绍敏. 基于离散元方法的颗粒材料缓冲性能及影响因素分析.  , 2016, 65(10): 104501. doi: 10.7498/aps.65.104501
    [4] 何菲菲, 彭政, 颜细平, 蒋亦民. 振动颗粒混合物中的周期性分聚现象与能量耗散.  , 2015, 64(13): 134503. doi: 10.7498/aps.64.134503
    [5] 吴迪平, 李星祥, 秦勤, 管奔, 臧勇. 离散颗粒层被横向推移过程中的力学行为研究.  , 2014, 63(9): 098201. doi: 10.7498/aps.63.098201
    [6] 张富翁, 王立, 刘传平, 吴平. 竖直振动管中颗粒的上升运动.  , 2014, 63(1): 014501. doi: 10.7498/aps.63.014501
    [7] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散.  , 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [8] 黄德财, 冯耀东, 解为梅, 陆明, 吴海平, 胡凤兰, 邓开明. 颗粒密度对旋转筒内二元颗粒体系分离的影响.  , 2012, 61(12): 124501. doi: 10.7498/aps.61.124501
    [9] 张祺, 厚美瑛. 直剪颗粒体系的尺寸效应研究.  , 2012, 61(24): 244504. doi: 10.7498/aps.61.244504
    [10] 彭亚晶, 张卓, 王勇, 刘小嵩. 振动颗粒物质“巴西果”分离效应实验和理论研究.  , 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [11] 姜泽辉, 张峰, 郭波, 赵海发, 郑瑞华. 受振颗粒“毛细”系统中的对流与有序化.  , 2010, 59(8): 5581-5587. doi: 10.7498/aps.59.5581
    [12] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响.  , 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [13] 梁宣文, 李粮生, 侯兆国, 吕 震, 杨 雷, 孙 刚, 史庆藩. 垂直振动作用下二元混合颗粒分层的动态循环反转.  , 2008, 57(4): 2300-2305. doi: 10.7498/aps.57.2300
    [14] 彭 政, 厚美瑛, 史庆藩, 陆坤权. 颗粒介质的离散态特性研究.  , 2007, 56(2): 1195-1202. doi: 10.7498/aps.56.1195
    [15] 姜泽辉, 王运鹰, 吴 晶. 窄振动颗粒床中的运动模式.  , 2006, 55(9): 4748-4753. doi: 10.7498/aps.55.4748
    [16] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象.  , 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [17] 姜泽辉, 刘新影, 彭雅晶, 李建伟. 竖直振动颗粒床中的倍周期运动.  , 2005, 54(12): 5692-5698. doi: 10.7498/aps.54.5692
    [18] 姜泽辉, 李 斌, 赵海发, 王运鹰, 戴智斌. 竖直振动颗粒物厚层中冲击力分岔现象.  , 2005, 54(3): 1273-1278. doi: 10.7498/aps.54.1273
    [19] 胡国琦, 张训生, 鲍德松, 唐孝威. 二维颗粒流通道宽度效应的分子动力学模拟.  , 2004, 53(12): 4277-4281. doi: 10.7498/aps.53.4277
    [20] 姜泽辉, 陆坤权, 厚美瑛, 陈 唯, 陈相君. 振动颗粒混合物中的三明治式分离.  , 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
计量
  • 文章访问数:  3964
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-17
  • 修回日期:  2022-02-01
  • 上网日期:  2022-02-21
  • 刊出日期:  2022-05-20

/

返回文章
返回
Baidu
map