搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同Sb含量p-SnO2薄膜的制备和特性

冯秋菊 刘洋 潘德柱 杨毓琪 刘佳媛 梅艺赢 梁红伟

引用本文:
Citation:

不同Sb含量p-SnO2薄膜的制备和特性

冯秋菊, 刘洋, 潘德柱, 杨毓琪, 刘佳媛, 梅艺赢, 梁红伟

Fabrications of different Sb content p-SnO2 thin films

Feng Qiu-Ju, Liu Yang, Pan De-Zhu, Yang Yu-Qi, Liu Jia-Yuan, Mei Yi-Ying, Liang Hong-Wei
PDF
导出引用
  • 采用化学气相沉积方法, 利用Sb2O3/SnO作为源材料, 在蓝宝石衬底上制备出不同Sb掺杂量的SnO2薄膜, 并在此基础上制作出p-SnO2:Sb/n-SnO2同质p-n 结器件. 研究表明, 随着Sb含量的增加, 样品表面变得平滑, 晶粒尺寸逐渐增大, 且晶体质量有所改善, 发现少量Sb的掺入可以起到表面活化剂的作用. Hall测量结果证实适量Sb的掺杂可以使SnO2呈现p型导电特性, 当Sb2O3/SnO的质量比为1:5时, 其电学参数为最佳值. 此外, p-SnO2:Sb/n-SnO2同质p-n结器件展现出良好的整流特性, 其正向开启电压为3.4 V.
    Tin oxide (SnO2) is a wide-band-gap semiconductor with a bandwidth of 3.6 eV at room temperature, which is widely used in many fields, such as gas sensors, transparent electrodes and optoelectronic devices due to its high optical transparency, low resistivity, and higher chemical and physical stability. However for the real applications of SnO2 based optoelectronic devices, it is necessary to obtain both n-type and p-type SnO2 materials. Unfortunately, SnO2 is intrinsically an n-type semiconductor material, therefore most efforts have been made to obtain p-type SnO2 materials. In this paper, SnO2 thin films with different Sb12 concentrations are grown on Al2O3 substrates by chemical vapor deposition method through using Sb2O3 and SnO as reaction source. The surface morphology, elemental concentration, and structural properties of SnO2 thin films with different Sb concentrations are investigated by field-emission scanning electron microscopy, energy-dispersive spectroscopy and X-ray diffraction, respectively. As the Sb content increases, the SnO2 thin films become more smooth and the grain size increases, indicating that the crystal quality of the thin film is improved. It is also found small amount of Sb doping of SnO2 thin film can be act as a surfactant. Moreover, the Hall measurement results indicate that the Sb doped SnO2 thin film has a p-type conductivity for an optimum Sb2O3/SnO mass ratio of 1:5. The optical absorption spectrum measurement indicates that the energy gap of sample is evidently blue-shifted with increasing Sb doping concentration. Furthermore, the Sb doped p-SnO2/n-SnO2 thin film homojunction is successfully fabricated to verify the p-type conductivity of Sb doped SnO2. The Sb doped p-SnO2/n-SnO2 homojunction device shows good rectifier characteristics, and its forward-turn-on voltage is 3.4 V.
      通信作者: 冯秋菊, fengqiuju@163.com
    • 基金项目: 国家自然科学基金(批准号: 11004020)、辽宁省自然科学基金(批准号: 2014020004)和中国科学院空间激光通信及检验技术重点实验室开放基金(批准号: KJJG10-1)资助的课题.
      Corresponding author: Feng Qiu-Ju, fengqiuju@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11004020), the Natural Science Foundation of Liaoning Province, China (Grant No. 2014020004), and the Key Laboratory of Space Laser Communication and Testing Technology, Chinese Academy of Sciences (Grant No. KJJG10-1).
    [1]

    Li J Z, Tao Y B, Chen Z Z, Jiang X Z, Fu X X, Jiang S, Jiao Q Q, Yu T P, Zhang G Y 2014 Chin. Phys. B 23 016101

    [2]

    Yu F, Wang P J, Zhang C W 2010 Acta Phys. Sin. 59 7285 (in Chinese) [于峰, 王培吉, 张昌文 2010 59 7285]

    [3]

    Wang Y H, Ma J, Ji F, Yu X H, Zhang X J, Ma H L 2005 Acta Phys. Sin. 54 1731 (in Chinese) [王玉恒, 马瑾, 计峰, 余旭浒, 张锡健, 马洪磊 2005 54 1731]

    [4]

    Ji Z G, He Z J, Song Y L 2004 Acta Phys. Sin. 53 4330 (in Chinese) [季振国, 何振杰, 宋永梁 2004 53 4330]

    [5]

    Geraldo V, Scalvia L V A, Lisboa-Filho P N, Morilla-Santos C 2006 J. Phys. Chem. Solids 67 1410

    [6]

    Ji Z G, Zhao L N, He Z P, Zhou Q, Chen C 2006 Mater. Lett. 60 1387

    [7]

    Ji Z G, He Z J, Song Y L, Liu K, Ye Z Z 2003 J. Cryst. Growth 259 282

    [8]

    Yang T Y, Qin X B, Wang H H, Jia Q J, Yu R S, Wang B Y, Wang J, Ibrahim K, Jiang X M, He Q 2010 Thin Solid Films 518 5542

    [9]

    Yang T Y, Qin X B, Wang H H, Jia Q J, Yu R S, Wang B Y, Wang J, Ibrahim K, Jiang X M 2010 Powder Diffr. Suppl. 25 S36

    [10]

    Ravichandran K, Thirumurugan K, Begum N J, Snega S 2013 Superlatt. Microstruct. 60 327

    [11]

    Ni J M, Zhao X J, Zhao J 2012 Surfa. Coat. Tech. 206 4356

    [12]

    Ni J, Zhao X, Zheng X, Zhao J, Liu B 2009 Acta Mater. 57 278

    [13]

    Zhao J Z, Liang H W, Sun J C, Feng Q J, Li S S, Bian J M, Hu L Z, Du G T, Ren J J, Liu J L 2011 Phys. Stat. Sol. A 208 825

    [14]

    Zhang L, Tang H F, Schieke J, Mavrikakis M, Kuech T F 2002 J. Appl. Phys. 92 052304

    [15]

    Zhong W W, Liu F M, Cai L G, Zhou C C, Ding P, Zhang H 2010 J. Alloys. Compd. 499 265

    [16]

    Kim H, Horwitz J S, Piqué A, Gilmore C M, Chrisey D B 1999 Appl. Phys. A 69 447

  • [1]

    Li J Z, Tao Y B, Chen Z Z, Jiang X Z, Fu X X, Jiang S, Jiao Q Q, Yu T P, Zhang G Y 2014 Chin. Phys. B 23 016101

    [2]

    Yu F, Wang P J, Zhang C W 2010 Acta Phys. Sin. 59 7285 (in Chinese) [于峰, 王培吉, 张昌文 2010 59 7285]

    [3]

    Wang Y H, Ma J, Ji F, Yu X H, Zhang X J, Ma H L 2005 Acta Phys. Sin. 54 1731 (in Chinese) [王玉恒, 马瑾, 计峰, 余旭浒, 张锡健, 马洪磊 2005 54 1731]

    [4]

    Ji Z G, He Z J, Song Y L 2004 Acta Phys. Sin. 53 4330 (in Chinese) [季振国, 何振杰, 宋永梁 2004 53 4330]

    [5]

    Geraldo V, Scalvia L V A, Lisboa-Filho P N, Morilla-Santos C 2006 J. Phys. Chem. Solids 67 1410

    [6]

    Ji Z G, Zhao L N, He Z P, Zhou Q, Chen C 2006 Mater. Lett. 60 1387

    [7]

    Ji Z G, He Z J, Song Y L, Liu K, Ye Z Z 2003 J. Cryst. Growth 259 282

    [8]

    Yang T Y, Qin X B, Wang H H, Jia Q J, Yu R S, Wang B Y, Wang J, Ibrahim K, Jiang X M, He Q 2010 Thin Solid Films 518 5542

    [9]

    Yang T Y, Qin X B, Wang H H, Jia Q J, Yu R S, Wang B Y, Wang J, Ibrahim K, Jiang X M 2010 Powder Diffr. Suppl. 25 S36

    [10]

    Ravichandran K, Thirumurugan K, Begum N J, Snega S 2013 Superlatt. Microstruct. 60 327

    [11]

    Ni J M, Zhao X J, Zhao J 2012 Surfa. Coat. Tech. 206 4356

    [12]

    Ni J, Zhao X, Zheng X, Zhao J, Liu B 2009 Acta Mater. 57 278

    [13]

    Zhao J Z, Liang H W, Sun J C, Feng Q J, Li S S, Bian J M, Hu L Z, Du G T, Ren J J, Liu J L 2011 Phys. Stat. Sol. A 208 825

    [14]

    Zhang L, Tang H F, Schieke J, Mavrikakis M, Kuech T F 2002 J. Appl. Phys. 92 052304

    [15]

    Zhong W W, Liu F M, Cai L G, Zhou C C, Ding P, Zhang H 2010 J. Alloys. Compd. 499 265

    [16]

    Kim H, Horwitz J S, Piqué A, Gilmore C M, Chrisey D B 1999 Appl. Phys. A 69 447

  • [1] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究.  , 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [2] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究.  , 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [3] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能.  , 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [4] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结.  , 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [5] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制.  , 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [6] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究.  , 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [7] 张宝军, 王芳, 沈稼强, 单欣, 邸希超, 胡凯, 张楷亮. 钴掺杂MoSe2共生长中氢气的作用分析及磁电特性研究.  , 2020, 69(4): 048101. doi: 10.7498/aps.69.20191302
    [8] 冯秋菊, 石博, 李昀铮, 王德煜, 高冲, 董增杰, 解金珠, 梁红伟. 单根Sb掺杂ZnO微米线非平衡电桥式气敏传感器的制作与性能.  , 2020, 69(3): 038102. doi: 10.7498/aps.69.20191530
    [9] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移.  , 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [10] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究.  , 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [11] 冯秋菊, 潘德柱, 邢研, 石笑驰, 杨毓琪, 李芳, 李彤彤, 郭慧颖, 梁红伟. 图形化蓝宝石衬底上有序微米半球形SnO2的生长、结构和光学特性研究.  , 2017, 66(3): 038101. doi: 10.7498/aps.66.038101
    [12] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀.  , 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [13] 艾立强, 张相雄, 陈民, 熊大曦. 类金刚石薄膜在硅基底上的沉积及其热导率.  , 2016, 65(9): 096501. doi: 10.7498/aps.65.096501
    [14] 邢兰俊, 常永勤, 邵长景, 王琳, 龙毅. Sn掺杂ZnO薄膜的室温气敏性能及其气敏机理.  , 2016, 65(9): 097302. doi: 10.7498/aps.65.097302
    [15] 马立安, 郑永安, 魏朝晖, 胡利勤, 郭太良. 合成温度和N2/O2流量比对碳纤维衬底上生长的SnO2纳米线形貌及场发射性能影响.  , 2015, 64(23): 237901. doi: 10.7498/aps.64.237901
    [16] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究.  , 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [17] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响.  , 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [18] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林. Sb2Te3 纳米结构的制备与表征.  , 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [19] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜.  , 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [20] 闫桂沈, 李贺军, 郝志彪. 热解碳化学气相沉积中的多重定态和非平衡相变的研究.  , 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
计量
  • 文章访问数:  6000
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-27
  • 修回日期:  2015-09-10
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map