搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电流调控磁涡旋的极性和旋性

孙明娟 刘要稳

引用本文:
Citation:

电流调控磁涡旋的极性和旋性

孙明娟, 刘要稳

Controlling of magnetic vortex chirality and polarity by spin-polarized current

Sun Ming-Juan, Liu Yao-Wen
PDF
导出引用
  • 提出了一种特殊自旋阀结构, 其极化层(钉扎层)磁矩沿面内方向, 自由层磁矩成磁涡旋结构. 自由层在形状上设计成左右两边厚度不同的阶梯形圆盘. 微磁学模拟研究发现, 通过调控所施加的高斯型脉冲电流的大小、方向和脉冲宽度, 可以实现磁涡旋的不同旋性、不同极性的组态控制. 分析了该结构中电流调控磁涡旋旋性和极性的物理原因和微观机理.
    For a nanodisk, magnetic vortex characterized by a curling magnetization is an energetically stable state. The magnetization in the center of the magnetic vortex is directed upward or downward, namely, the vortex core polarity p=+1 or p=-1 refers to up or down, respectively. The curling direction of magnetization, namely, the vortex chirality, is either counter-clockwise or clockwise. Thus, different combinations of chirality and polarity in a vortex structure demonstrate four stable magnetic states, which can be used to design a multibit memory cell. Such a multibit memory application requires the independent controlling of both the vortex chirality and vortex polarity, which has received considerable attention recently. Switching the vortex polarity has been achieved by using either a magnetic field or a current. The vortex chirality can be controlled by introducing asymmetric geometry of nanodisks. In this article, by using micromagnetic simulations, we present an effective method to simultaneously control the vortex chirality and polarity in a spin valve structure, in which the fixed spin polarizer layer is magnetized in the film plane when the free layer has a magnetic vortex configuration. The free layer is designed into a ladder shape with the right part being thicker than the left part. Our simulations indicate that a combination of desirable vortex chirality and polarity can be easily controlled by a Gaussian current pulse with proper strength and pulse duration through the spin-transfer torque effect. The insight into physical mechanism of the controllable vortex is demonstrated by a series of snapshots. If the magnetic moment of the free layer is saturated in the direction of 0θ θ is the angle between the magnetization and+x axis, the vortex with the counter-clockwise chirality will be generated after the pulse. In contrast, if the free layer magnetization is saturated along the direction πθ <2π, after the pulse, the vortex will have the clockwise chirality. The core polarity of the remanent vortex state is determined by the sign of the magnetic charges which are formed in the step-side of nanodisk during the current pulse.
      通信作者: 刘要稳, yaowen@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11274241)资助的课题.
      Corresponding author: Liu Yao-Wen, yaowen@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274241).
    [1]

    Cowburn R P, Koltsov D K, Adeyeye A O, Welland M E, Tricker D M 1999 Phys. Rev. Lett. 83 1042

    [2]

    Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R 2002 Science 298 577

    [3]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T 2000 Science 289 930

    [4]

    Wei H Y, Lu Q F, Zhao S F, Zhang X Q, Feng J F, Han X F 2004 Chin. Phys. 13 1553

    [5]

    Wei H X, Hickey M C, Anderson G I R, Han X F, Marrows C H 2008 Phys. Rev. B 77 132401

    [6]

    Kim S, Lee K, Yu Y, Choi Y 2008 Appl. Phys. Lett. 92 022509

    [7]

    Zhang S L, liu Y, Collins-Mclntyre L J, Hesjedal T, Zhang J Y, Wang S G, Yu G H 2013 Sci. Rep. 3 2087

    [8]

    Zhang S L, Zhang J Y, Alexander A, Wang S G, Yu G H, Hesjedal T 2014 Sci. Rep. 4 6109

    [9]

    Zhang S L, Alexander A, Zhang J Y, Yu G H, Wang S G, Hesjedal T 2015 Adv. Elec. Mat. 1 1400054

    [10]

    Kikuchi N, Okamoto S, Kitakami O, Shimada Y, Kim S G, Otani Y, Fukamichi K 2001 J. Appl. Phys. 90 6548

    [11]

    Van Waeyenberge B, Puzic A, Stoll H, et al. 2006 Nature 444 461

    [12]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mat. 6 270

    [13]

    Pigeau B, De Loubens G, Klein O, Riegler A, Lochner F, Schmidt G, Molenkamp L W 2011 Nat. Phys. 7 26

    [14]

    Liu Y, Li H N, Hu Y, Du A 2014 Chin. Phys. B 23 087501

    [15]

    Hertel R, Gliga S, Fähnle M, Schneider C M 2007 Phys. Rev. Lett. 98 117201

    [16]

    Liu Y, Gliga S, Hertel R, Schneider C M 2007 Appl. Phys. Lett. 91 112501

    [17]

    Jin W, Liu Y W 2010 Chin. Phys. B 19 037001

    [18]

    Liu Y, He H, Zhang Z 2007 Appl. Phys. Lett. 91 242501

    [19]

    Yakata S, Miyata M, Honda S, Itoh H, Wada H, Kimura T 2011 Appl. Phys. Lett. 99 242507

    [20]

    Uhlir V, Urbanek M, Hladik L, Spousta J, Im M Y, Fischer P, Eibagi N, Kan J J, Fullerton E E, Sikola T 2013 Nat. Nano 8 341

    [21]

    Yakata S, Miyata M, Nonoguchi S, Wada H, Kimura T 2010 Appl. Phys. Lett. 97 222503

    [22]

    Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407

    [23]

    Jenkins A S, Grimaldi E, Bortolotti P, Lebrun R, Kubota H, Yakushiji K, Fukushima A, de Loubens G, Klein O, Yuasa S, Cros V 2014 Appl. Phys. Lett. 105 172403

  • [1]

    Cowburn R P, Koltsov D K, Adeyeye A O, Welland M E, Tricker D M 1999 Phys. Rev. Lett. 83 1042

    [2]

    Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R 2002 Science 298 577

    [3]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T 2000 Science 289 930

    [4]

    Wei H Y, Lu Q F, Zhao S F, Zhang X Q, Feng J F, Han X F 2004 Chin. Phys. 13 1553

    [5]

    Wei H X, Hickey M C, Anderson G I R, Han X F, Marrows C H 2008 Phys. Rev. B 77 132401

    [6]

    Kim S, Lee K, Yu Y, Choi Y 2008 Appl. Phys. Lett. 92 022509

    [7]

    Zhang S L, liu Y, Collins-Mclntyre L J, Hesjedal T, Zhang J Y, Wang S G, Yu G H 2013 Sci. Rep. 3 2087

    [8]

    Zhang S L, Zhang J Y, Alexander A, Wang S G, Yu G H, Hesjedal T 2014 Sci. Rep. 4 6109

    [9]

    Zhang S L, Alexander A, Zhang J Y, Yu G H, Wang S G, Hesjedal T 2015 Adv. Elec. Mat. 1 1400054

    [10]

    Kikuchi N, Okamoto S, Kitakami O, Shimada Y, Kim S G, Otani Y, Fukamichi K 2001 J. Appl. Phys. 90 6548

    [11]

    Van Waeyenberge B, Puzic A, Stoll H, et al. 2006 Nature 444 461

    [12]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mat. 6 270

    [13]

    Pigeau B, De Loubens G, Klein O, Riegler A, Lochner F, Schmidt G, Molenkamp L W 2011 Nat. Phys. 7 26

    [14]

    Liu Y, Li H N, Hu Y, Du A 2014 Chin. Phys. B 23 087501

    [15]

    Hertel R, Gliga S, Fähnle M, Schneider C M 2007 Phys. Rev. Lett. 98 117201

    [16]

    Liu Y, Gliga S, Hertel R, Schneider C M 2007 Appl. Phys. Lett. 91 112501

    [17]

    Jin W, Liu Y W 2010 Chin. Phys. B 19 037001

    [18]

    Liu Y, He H, Zhang Z 2007 Appl. Phys. Lett. 91 242501

    [19]

    Yakata S, Miyata M, Honda S, Itoh H, Wada H, Kimura T 2011 Appl. Phys. Lett. 99 242507

    [20]

    Uhlir V, Urbanek M, Hladik L, Spousta J, Im M Y, Fischer P, Eibagi N, Kan J J, Fullerton E E, Sikola T 2013 Nat. Nano 8 341

    [21]

    Yakata S, Miyata M, Nonoguchi S, Wada H, Kimura T 2010 Appl. Phys. Lett. 97 222503

    [22]

    Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407

    [23]

    Jenkins A S, Grimaldi E, Bortolotti P, Lebrun R, Kubota H, Yakushiji K, Fukushima A, de Loubens G, Klein O, Yuasa S, Cros V 2014 Appl. Phys. Lett. 105 172403

  • [1] 马晓萍, 杨宏国, 李昌锋, 刘有继, 朴红光. 切边纳米铁磁盘对中磁涡旋旋性的磁场调控.  , 2021, 70(10): 107502. doi: 10.7498/aps.70.20201995
    [2] 闫健, 任志伟, 钟智勇. Y3Fe5O12-CoFeB自旋波定向耦合器中的自旋波.  , 2021, 70(18): 187501. doi: 10.7498/aps.70.20210507
    [3] 李栋, 董生智, 李磊, 徐吉元, 陈红升, 李卫. 核((Nd0.7, Ce0.3)2Fe14B)-壳(Nd2Fe14B)型磁体反磁化的微磁学模拟.  , 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [4] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控.  , 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [5] 董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪. 界面Dzyaloshinskii-Moriya相互作用下辐射状磁涡旋形成机制.  , 2018, 67(22): 228502. doi: 10.7498/aps.67.20181392
    [6] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳. 磁斯格明子的微磁学研究进展和应用.  , 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [7] 吕刚, 曹学成, 张红, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟. 磁涡旋极性翻转的局域能量.  , 2016, 65(21): 217503. doi: 10.7498/aps.65.217503
    [8] 孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政. 利用扫描透射X射线显微镜观测磁涡旋结构.  , 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [9] 彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳. 不同易轴取向下对Nd2Fe14B/Fe65Co35磁性双层膜的微磁学模拟.  , 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [10] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振.  , 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [11] 范喆, 马晓萍, 李尚赫, 沈帝虎, 朴红光, 金东炫. 消磁场对纳米铁磁线磁畴壁动力学行为的影响.  , 2012, 61(10): 107502. doi: 10.7498/aps.61.107502
    [12] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟.  , 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [13] 阴津华, C. H. Hee, 潘礼庆. 反铁磁耦合记录介质的一级翻转曲线.  , 2008, 57(11): 7287-7291. doi: 10.7498/aps.57.7287
    [14] 杨秀会. W(110)基底上的铁纳米岛初始自发磁化态的微磁学模拟.  , 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [15] 闫树科, 包 瑾, 苏喜平, 徐晓光, 姜 勇. 合成反铁磁Ni81Fe19/Co90Fe10/Ru/Co90Fe10/Ni81Fe19的研究.  , 2008, 57(4): 2504-2508. doi: 10.7498/aps.57.2504
    [16] 苏喜平, 包 瑾, 闫树科, 徐晓光, 姜 勇. 双合成反铁磁结构及其对自旋阀巨磁电阻效应的影响.  , 2008, 57(4): 2509-2513. doi: 10.7498/aps.57.2509
    [17] 姜宏伟, 王艾玲, 郑 鹉. 自旋阀中的各向异性磁电阻效应.  , 2005, 54(5): 2338-2341. doi: 10.7498/aps.54.2338
    [18] 柴春林, 滕蛟, 于广华, 朱逢吾, 赖武彦, 肖纪美. 退火对FeMn钉扎自旋阀性质的影响.  , 2002, 51(8): 1846-1850. doi: 10.7498/aps.51.1846
    [19] 姜宏伟, 李明华, 于广华, 朱逢吾, 郑鹉. Bi对自旋阀钉扎场的影响及机理.  , 2002, 51(6): 1366-1370. doi: 10.7498/aps.51.1366
    [20] 沈峰, 徐庆宇, 卢正启, 蔡建旺, 赖武彦, 张泽. 一种非连续纳米氧化层自旋阀的显微结构研究.  , 2002, 51(8): 1851-1855. doi: 10.7498/aps.51.1851
计量
  • 文章访问数:  6916
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-04
  • 修回日期:  2015-09-10
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map