搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高斯光束与谐振腔基模模式光路谐振匹配的分析与校准

崔立红 赵维宁 颜昌翔

引用本文:
Citation:

高斯光束与谐振腔基模模式光路谐振匹配的分析与校准

崔立红, 赵维宁, 颜昌翔

Analysis and alignment of the light path of Gauss beam matched to the fundamental mode ofan optical resonator

Cui Li-Hong, Zhao Wei-Ning, Yan Chang-Xiang
PDF
导出引用
  • 为了降低高斯光束与谐振腔耦合过程中失调量和失配量对基于无源谐振腔测量技术精度的影响, 采用高斯光束变换规律、模式耦合有关理论以及光束传播坐标变换等相关理论, 就失调量和失配量对基模耦合效率的影响分别进行分析和模拟, 并据此给出了一般情况下两个参考量同时存在时基模耦合效率的表达式. 分析表明: 失配量的存在主要影响激光器与谐振腔的耦合效率, 而对高阶模式的激发影响较小, 因此对谐振腔的衰减线型影响较小; 失调量的存在对谐振腔高阶模式的激发起主要作用, 给测量带来严重误差. 该结论为利用腔出射光信号来确定误调参量值的实验方案提供了依据. 因此, 在考虑光源光谱线宽的情况下, 就光源光谱线宽的特性提出两种装调校准方案: 基于法布里-珀罗干涉仪法和基于多维象限探测器探测谐振腔出射光的调节回路, 这将为分析基于无源谐振腔的相关技术测量误差来源以及实现测量系统的高精度装调提供理论指导.
    In order to reduce the influences of misalignment parameter and mismatch parameter on measurement based on optical resonator, the influence on the coupling efficiency of a source laser is stabilized to a fundamental cavity mode, and two limiting cases are analyzed and derived by using conversion of Gaussian beam, mode coupling theory and coordinate transformation theory, including the expression of coupling efficiency of fundamental cavity mode as two limiting cases emerge simultaneously. Analyses show that for mismatch parameter, only even-indexed Hermite-Gaussians beam is excited; for misalignment parameter, there exists an effect on the proportion of Hermite-Gaussians beam, which should bring about serious measurement error. These optical signals provide the error signals which are minimized. By taking the laser line width into account, we propose two methods for real time alignment of a Gaussian beam for an optical resonator perfectly coupled system: Fabry-Perot electro-optic sensors of a misadjusted system and control loops system depends on detecting emergent light of cavity via multi-dimensional quadrant detector. All of these will provide a theoretical direction for analyzing the measurement error and improving the measurement accuracy.
      通信作者: 颜昌翔, yancx@ciomp.ac.cn
    • 基金项目: 国家高技术研究发展计划(批准号: 2011AA12A103)资助的课题.
      Corresponding author: Yan Chang-Xiang, yancx@ciomp.ac.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA12A103).
    [1]

    Zhou B K, Gao Y Z, Chen T R, Chen J H 2012 Laser Principle (Vol. 6) (Beijing: National Defense Industry Press ) pp29-74 (in Chinese) [周炳琨, 高以智, 陈倜嵘, 陈家骅 2012 激光原理 (第六版) (北京: 国防工业出版社) 第2974页]

    [2]

    Li B C, Gong Y 2010 US Patent 7 679 750 B2 [2010-03-16]

    [3]

    Gong Y, Li B C, Han Y L, Liu M Q 2008 Proc. SPIE 7132 71320U

    [4]

    Qu Z C, Han Y L, Xiong S M, Li B C 2011 Proc. SPIE 8190 81901C

    [5]

    Rothman L S, Gordon I E, Barbe A, Chris Benner D, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P, Chance K, Coudert L H, Dana V, Devi V M, Fally S, Flaud J M, Gamache R R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J Y, Massie S T, Mikhailenko S N, Miller C E, Moazzen-Ahmadi N, Numenko O V, Nikitiin A V, Orphal J, Perevalov V I, Perriin A, Predoi-Cross A, Rinsland C P, Rotger M, Simeckova M, Smith M A H, Sung K, Tashkun S A, Tennyson J, Toth R A, Vandaele A C, van der Auwera J 2009 J. Quant. Spectrosc. Radiative Transfer 110 533

    [6]

    Maisons G, Carbajo P G, Carras M, Romanini D 2010 Opt. Lett. 35 3607

    [7]

    Chen Y U, Yan W B 2007 Proc. SPIE 6756 675607

    [8]

    Thorpe M J, Hudson D D, Moll K D, Lasri J, Ye J 2007 Opt. Lett. 32 307

    [9]

    Keefe A O, Deacon D A 1988 Rev. Sci. Instrum. 59 2544

    [10]

    Romanini D, Kachanov A A, Laboratoire E S 1997 Chem. Phys. Lett. 270 546

    [11]

    Siegman A E 1986 Laser (Mill Valley: University Science Book) p267

    [12]

    Klaassen T, de Jong J, van Exter M, Woerdman J P 2005 Opt. Lett. 30 1959

    [13]

    Dong Y H, Ding Y G, Xiao L 2005 Acta Phys. Sin. 54 5629 (in Chinese) [董玉和, 丁耀根, 肖刘 2005 54 5629]

    [14]

    Yi H Y 2006 Chin. J. Lasers 33 399 (in Chinese) [易亨瑜 2006 中国激光 33 399]

    [15]

    Tan Z Q, Long X W 2007 Chin. J. Lasers 34 962 (in Chinese) [谭中奇, 龙兴武 2007 中国激光 34 962]

    [16]

    Wang J, Lu E, Wang J Q 1999 Opt. Precision Eng. 7 48 (in Chinese) [王俊, 卢锷, 王家骐1999光学精密工程7 48]

    [17]

    Sayeh M R, Bilger H R, Habib T 1985 Appl. Opt. 24 3756

    [18]

    Gwenal G, Guillermo M, Coutaz J L, Duvillaret L, Kassi S, Romanini D 2007 Appl. Opt. 46 2001

    [19]

    Fang H L 1979 Acta Phys. Sin. 28 430 (in Chinese) [方洪烈 1979 28 430]

    [20]

    Sampas M N, Anderson D Z 1990 Appl. Opt. 29 394

    [21]

    Zare R N, Harb C C, Paldus B A, Spence T G 2003 US Patent 6 532 071 B2 [2003-03-11]

    [22]

    Zare R N, Harb C C, Spence T G 2000 US Patent 6 084 682 [2000-07-04]

  • [1]

    Zhou B K, Gao Y Z, Chen T R, Chen J H 2012 Laser Principle (Vol. 6) (Beijing: National Defense Industry Press ) pp29-74 (in Chinese) [周炳琨, 高以智, 陈倜嵘, 陈家骅 2012 激光原理 (第六版) (北京: 国防工业出版社) 第2974页]

    [2]

    Li B C, Gong Y 2010 US Patent 7 679 750 B2 [2010-03-16]

    [3]

    Gong Y, Li B C, Han Y L, Liu M Q 2008 Proc. SPIE 7132 71320U

    [4]

    Qu Z C, Han Y L, Xiong S M, Li B C 2011 Proc. SPIE 8190 81901C

    [5]

    Rothman L S, Gordon I E, Barbe A, Chris Benner D, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P, Chance K, Coudert L H, Dana V, Devi V M, Fally S, Flaud J M, Gamache R R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J Y, Massie S T, Mikhailenko S N, Miller C E, Moazzen-Ahmadi N, Numenko O V, Nikitiin A V, Orphal J, Perevalov V I, Perriin A, Predoi-Cross A, Rinsland C P, Rotger M, Simeckova M, Smith M A H, Sung K, Tashkun S A, Tennyson J, Toth R A, Vandaele A C, van der Auwera J 2009 J. Quant. Spectrosc. Radiative Transfer 110 533

    [6]

    Maisons G, Carbajo P G, Carras M, Romanini D 2010 Opt. Lett. 35 3607

    [7]

    Chen Y U, Yan W B 2007 Proc. SPIE 6756 675607

    [8]

    Thorpe M J, Hudson D D, Moll K D, Lasri J, Ye J 2007 Opt. Lett. 32 307

    [9]

    Keefe A O, Deacon D A 1988 Rev. Sci. Instrum. 59 2544

    [10]

    Romanini D, Kachanov A A, Laboratoire E S 1997 Chem. Phys. Lett. 270 546

    [11]

    Siegman A E 1986 Laser (Mill Valley: University Science Book) p267

    [12]

    Klaassen T, de Jong J, van Exter M, Woerdman J P 2005 Opt. Lett. 30 1959

    [13]

    Dong Y H, Ding Y G, Xiao L 2005 Acta Phys. Sin. 54 5629 (in Chinese) [董玉和, 丁耀根, 肖刘 2005 54 5629]

    [14]

    Yi H Y 2006 Chin. J. Lasers 33 399 (in Chinese) [易亨瑜 2006 中国激光 33 399]

    [15]

    Tan Z Q, Long X W 2007 Chin. J. Lasers 34 962 (in Chinese) [谭中奇, 龙兴武 2007 中国激光 34 962]

    [16]

    Wang J, Lu E, Wang J Q 1999 Opt. Precision Eng. 7 48 (in Chinese) [王俊, 卢锷, 王家骐1999光学精密工程7 48]

    [17]

    Sayeh M R, Bilger H R, Habib T 1985 Appl. Opt. 24 3756

    [18]

    Gwenal G, Guillermo M, Coutaz J L, Duvillaret L, Kassi S, Romanini D 2007 Appl. Opt. 46 2001

    [19]

    Fang H L 1979 Acta Phys. Sin. 28 430 (in Chinese) [方洪烈 1979 28 430]

    [20]

    Sampas M N, Anderson D Z 1990 Appl. Opt. 29 394

    [21]

    Zare R N, Harb C C, Paldus B A, Spence T G 2003 US Patent 6 532 071 B2 [2003-03-11]

    [22]

    Zare R N, Harb C C, Spence T G 2000 US Patent 6 084 682 [2000-07-04]

  • [1] 胡裕栋, 宋丽军, 王晨曦, 张沛, 周静, 李刚, 张鹏飞, 张天才. 基于纳米光纤的光学法布里-珀罗谐振腔腔内模场的表征.  , 2022, 71(23): 234203. doi: 10.7498/aps.71.20221538
    [2] 王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉. 光学谐振腔的传输特性.  , 2021, 70(20): 204202. doi: 10.7498/aps.70.20210234
    [3] 战海洋, 邢飞, 张利. 面向近原子尺度制造的光学测量精度极限分析.  , 2021, 70(6): 060703. doi: 10.7498/aps.70.20201924
    [4] 王维, 高社生, 孟阳. 型谐振腔结构的光学透射特性.  , 2017, 66(1): 017301. doi: 10.7498/aps.66.017301
    [5] 刘俊, 张天恩, 张伟, 雷龙海, 薛晨阳, 张文栋, 唐军. 平面环形谐振腔微光学陀螺结构设计与优化.  , 2015, 64(10): 107802. doi: 10.7498/aps.64.107802
    [6] 刘建华, 唐军, 商成龙, 张伟, 毕钰, 翟陈婷, 郭泽彬, 王明焕, 郭浩, 钱坤, 刘俊, 薛晨阳. 面向谐振式微光学陀螺应用的球形谐振腔DQ乘积优化.  , 2015, 64(15): 154206. doi: 10.7498/aps.64.154206
    [7] 崔立红, 颜昌翔, 赵维宁, 张新洁, 胡春辉. 失调多腔镜型环形谐振腔共轭光轴位置精度分析.  , 2015, 64(22): 224210. doi: 10.7498/aps.64.224210
    [8] 花世群, 骆英. 发光光弹性涂层折射率测量方法.  , 2013, 62(5): 057801. doi: 10.7498/aps.62.057801
    [9] 周国泉. 洛伦兹光束经光阑失调傍轴光学系统的传输.  , 2009, 58(9): 6185-6191. doi: 10.7498/aps.58.6185
    [10] 董玉和, 丁耀根, 肖 刘. 同轴谐振腔高阶横磁模式参数的研究.  , 2005, 54(12): 5629-5636. doi: 10.7498/aps.54.5629
    [11] 陆璇辉, 黄凯凯. 衍射光学元件改善激光谐振腔输出特性的研究.  , 2001, 50(8): 1409-1414. doi: 10.7498/aps.50.1409
    [12] 赵道木, 王绍民. 失调分数傅里叶变换及其光学作用.  , 2001, 50(10): 1935-1938. doi: 10.7498/aps.50.1935
    [13] 刘劲松, 梁昌洪, 安毓英, 李铭华, 金婵, 徐玉恒, 吴仲康. 掺杂铌酸锂双相位共轭镜光学谐振腔的最佳抽运比.  , 1995, 44(8): 1217-1221. doi: 10.7498/aps.44.1217
    [14] 李先枢, 徐家进. 轴对称光学无源谐振腔各阶横模的系列计算.  , 1986, 35(8): 1087-1090. doi: 10.7498/aps.35.1087
    [15] 李先枢. 光学无源谐振腔的矩阵理论(柱坐标)(Ⅰ)——自洽场矩阵方程.  , 1983, 32(8): 990-1001. doi: 10.7498/aps.32.990
    [16] 李先枢, 高燕球, 陈志恬, 冯镇业. 光学无源谐振腔的矩阵理论(柱坐标)(Ⅱ)——轴对称稳定光学无源谐振腔的计算.  , 1983, 32(8): 1002-1016. doi: 10.7498/aps.32.1002
    [17] 洪熙春, 黄维刚, 王绍民. 失调光学系统的衍射积分公式.  , 1982, 31(12): 75-83. doi: 10.7498/aps.31.75
    [18] 刘建邦. 共焦不稳定光学谐振腔的解析解.  , 1980, 29(9): 1231-1236. doi: 10.7498/aps.29.1231
    [19] 肖超亮. 大光轴角晶体光学定向的经验方程.  , 1980, 29(2): 270-272. doi: 10.7498/aps.29.270
    [20] 叶碧青, 马忠林. 激光谐振腔内光学元件的热光效应.  , 1980, 29(6): 756-763. doi: 10.7498/aps.29.756
计量
  • 文章访问数:  7652
  • PDF下载量:  407
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-23
  • 修回日期:  2015-06-25
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map