-
本文基于分子动力学方法模拟金刚石刀具纳米切削单晶硅, 从刀具的弹塑性变形、CC键断裂对碳原子结构的影响以及金刚石刀具的石墨化磨损等方面对金刚石刀具的磨损进行分析, 采用配位数法和6元环法表征刀具上的磨损碳原子. 模拟结果表明: 在纳米切削过程中, 金刚石刀具表层CC键的断裂使其两端碳原子由sp3杂化转变为sp2杂化, 同时, 表面上的杂化结构发生变化的碳原子与其第一近邻的sp2杂化碳原子所构成的区域发生平整, 由金刚石的立体网状结构转变为石墨的平面结构, 导致金刚石刀具发生磨损; 刀具表面低配位数碳原子的重构使其近邻区域产生扭曲变形, CC键键能随之减弱, 在高温和高剪切应力的作用下, 极易发生断裂; 在切削刃的棱边上, 由于表面碳原子的配位严重不足, 断开较少的CC键就可以使表面6 元环中碳原子的配位数都小于4, 导致金刚石刀具发生石墨化磨损.It is well known that diamond is one of the most ideal cutting tool for materials, but the rapid tool wear can make surface integrity of the machined surface decline sharply during the nanometric cutting process for a single crystal silicon. Thus, a research on the wear mechanism of the diamond tool is of tremendous importance for selecting measures to reduce tool wear so as to extend service life of the tool. In this paper, the molecular dynamics simulation is applied to investigating the wear of the diamond tool during nanometric cutting for the single crystal silicon. Tersoff potential is used to describe the CC and SiSi interactions, and also the Morse potential for the CSi interaction. The rake and flank faces are diamond (111) and (112) planes respectively. A new method, by the name of 6-ring, is proposed to describe the bond change of carbon atoms. This new method can extract, all the worn carbon atoms in diamond tool, whose accuracy is higher than the conventional coordination number method. Moreover, the graphitized carbon atoms in the diamond tool also can be extracted by the combination of these two methods. Results show that during the cutting process, the CC bond's breaking in the surface layer of the diamond tool leads to the transformation of hybrid structure of the carbon atoms at both ends of the broken bond, from sp3 to sp2. Following to the bond breaking, the bond angle between the surface carbon atoms increases to 119.3 whose hybrid structure has changed, and the length between nearest neighboring atoms quickly decreases to 0.144 nm, indicating that the space structure formed by these carbon atoms has changed from 3D net structure of diamond to plane structure of graphite. Hence, the carbon atoms in the tool surface whose space structure has changed due to bond breaking should be defined as worn carbon atoms, but not only the carbon atoms whose hybrid structure has changed. The structure defects at both edges of the diamond tool are much more serious, which make the energy of CC bonds at the edges weakened with the enhancement of defects. The bonds with lower energy are broken under the effect of high temperature and shear stress, which also produces the tool wear. The graphitization occurs at the tool of the cutting tool because the structure defects there are the most serious. The reconstruction of the carbon atoms with lower coordination number causes its neighboring region to produce serious distortion, which leads to easy breaking of CC bonds in this region.
-
Keywords:
- molecular dynamics /
- nanometric cutting /
- diamond tool wear /
- 6-ring method
[1] Narulkar R, Bukkapatnam S, Raff L M, Komanduri R 2009 Comp. Mater. Sci. 45 358
[2] Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101
[3] Fang F Z, Zhang G X 2003 Int. J. Adv. Manuf. Technol. 22 703
[4] Yan J W, Asami T, Harada H, Kuriyagawa T 2012 Ann. CIRP 61 131
[5] Yan J W, Zhang Z Y, Kuriyagawa T 2009 Int. J. Mach. Tool Manu. 49 366
[6] Yan J W, Syoji K, Tamaki J 2003 Wear 255 1380
[7] Uddin M S, Seah K H W, Li X P, Rahman M, Liu K 2004 Wear 257 751
[8] Zong W J, Sun T, Li D, Cheng K, Liang Y C 2008 Int. J. Mach. Tool Manu. 48 1678
[9] Cheng K, Luo X, Ward R, Holt R 2003 Wear 255 1427
[10] Li X P, He T, Rahman M 2005 Wear 259 1207
[11] Jia P, Zhou M 2012 Chin. J. Mech. Eng-En. 25 1224
[12] Yang N, Zong W J, Li Z Q, Sun T 2015 Int. J. Adv. Manuf. Technol. 77 1029
[13] Zong W J, Zhang J J, Liu Y, Sun T 2014 Appl. Surf. Sci. 316 617
[14] Goel S, Luo X C, Reuben R L 2013 Tribol. Int. 57 272
[15] Cao S Y 2013 M. S. Thesis (Qinghuangdao: Yanshan University) (in Chinese) [曹思宇 2013 硕士学位论文 (秦皇岛: 燕山大学)]
[16] Zong W J, Li Z Q, Sun T, Li D, Cheng K 2010 J. Mater. Process. Tech. 210 858
[17] Tersoff J 1988 Phys. Rev. B 37 6991
[18] Cai M B, Li X P, Rahman M 2007 Wear 263 1459
[19] [2014]
[20] Yan J W, Asami T, Harada H, Kuriyagawa T 2009 Precis. Eng. 33 378
[21] Kuznetsov V L, Zilberberg I L, Butenko Y V, Chuvilin A L, Segall B 1999 J. Appl. Phys. 86 863
[22] Gogotsi Y G, Kailer A, Nickel K G 1999 Nature 401 663
[23] Chacham H, Kleinman L 2000 Phys. Rev. Lett. 85 4904
[24] Liu F B, Wang J D, Chen D R, Zhao M, He G P 2010 Acta Phys. Sin. 59 6556(in Chinese) [刘峰斌, 汪家道, 陈大融, 赵明, 何广平 2010 59 6556]
[25] Gilman J J 1995 Czech. J. Phys. 45 913
[26] Shamsa M, Liu W L, Balandin A A, Casiraghi C, Milne W I, Ferrari A C 2006 Appl. Phys. Lett. 89 161921
[27] Li L S, Zhao X 2011 J. Chem. Phys. 134 044711
[28] Qin Y H, Tang C, Zhang C X, Meng L J, Zhong J X 2015 Acta Phys. Sin. 64 016804(in Chinese) [覃业宏, 唐超, 张春小, 孟利军, 钟键新 2015 64 016804]
[29] Ge Y F, Xu J H, Yang H 2010 Wear 269 699
[30] Zhang J G 2010 M. S. Thesis (Harbin: Harbin Institue of Technology) (in Chinese) [张建国 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]
[31] Gippius A A, Khmelnitsky R A, Dravin V A, Khomich A V 2001 Physica B 308-310 573
-
[1] Narulkar R, Bukkapatnam S, Raff L M, Komanduri R 2009 Comp. Mater. Sci. 45 358
[2] Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101
[3] Fang F Z, Zhang G X 2003 Int. J. Adv. Manuf. Technol. 22 703
[4] Yan J W, Asami T, Harada H, Kuriyagawa T 2012 Ann. CIRP 61 131
[5] Yan J W, Zhang Z Y, Kuriyagawa T 2009 Int. J. Mach. Tool Manu. 49 366
[6] Yan J W, Syoji K, Tamaki J 2003 Wear 255 1380
[7] Uddin M S, Seah K H W, Li X P, Rahman M, Liu K 2004 Wear 257 751
[8] Zong W J, Sun T, Li D, Cheng K, Liang Y C 2008 Int. J. Mach. Tool Manu. 48 1678
[9] Cheng K, Luo X, Ward R, Holt R 2003 Wear 255 1427
[10] Li X P, He T, Rahman M 2005 Wear 259 1207
[11] Jia P, Zhou M 2012 Chin. J. Mech. Eng-En. 25 1224
[12] Yang N, Zong W J, Li Z Q, Sun T 2015 Int. J. Adv. Manuf. Technol. 77 1029
[13] Zong W J, Zhang J J, Liu Y, Sun T 2014 Appl. Surf. Sci. 316 617
[14] Goel S, Luo X C, Reuben R L 2013 Tribol. Int. 57 272
[15] Cao S Y 2013 M. S. Thesis (Qinghuangdao: Yanshan University) (in Chinese) [曹思宇 2013 硕士学位论文 (秦皇岛: 燕山大学)]
[16] Zong W J, Li Z Q, Sun T, Li D, Cheng K 2010 J. Mater. Process. Tech. 210 858
[17] Tersoff J 1988 Phys. Rev. B 37 6991
[18] Cai M B, Li X P, Rahman M 2007 Wear 263 1459
[19] [2014]
[20] Yan J W, Asami T, Harada H, Kuriyagawa T 2009 Precis. Eng. 33 378
[21] Kuznetsov V L, Zilberberg I L, Butenko Y V, Chuvilin A L, Segall B 1999 J. Appl. Phys. 86 863
[22] Gogotsi Y G, Kailer A, Nickel K G 1999 Nature 401 663
[23] Chacham H, Kleinman L 2000 Phys. Rev. Lett. 85 4904
[24] Liu F B, Wang J D, Chen D R, Zhao M, He G P 2010 Acta Phys. Sin. 59 6556(in Chinese) [刘峰斌, 汪家道, 陈大融, 赵明, 何广平 2010 59 6556]
[25] Gilman J J 1995 Czech. J. Phys. 45 913
[26] Shamsa M, Liu W L, Balandin A A, Casiraghi C, Milne W I, Ferrari A C 2006 Appl. Phys. Lett. 89 161921
[27] Li L S, Zhao X 2011 J. Chem. Phys. 134 044711
[28] Qin Y H, Tang C, Zhang C X, Meng L J, Zhong J X 2015 Acta Phys. Sin. 64 016804(in Chinese) [覃业宏, 唐超, 张春小, 孟利军, 钟键新 2015 64 016804]
[29] Ge Y F, Xu J H, Yang H 2010 Wear 269 699
[30] Zhang J G 2010 M. S. Thesis (Harbin: Harbin Institue of Technology) (in Chinese) [张建国 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]
[31] Gippius A A, Khmelnitsky R A, Dravin V A, Khomich A V 2001 Physica B 308-310 573
计量
- 文章访问数: 7080
- PDF下载量: 174
- 被引次数: 0