搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单晶硅纳米切削中CC键断裂对金刚石刀具磨损的影响

王治国 张鹏 陈家轩 白清顺 梁迎春

引用本文:
Citation:

单晶硅纳米切削中CC键断裂对金刚石刀具磨损的影响

王治国, 张鹏, 陈家轩, 白清顺, 梁迎春

Effect of CC bond breakage on diamond tool wear in nanometric cutting of silicon

Wang Zhi-Guo, Zhang Peng, Chen Jia-Xuan, Bai Qing-Shun, Liang Ying-Chu
PDF
导出引用
  • 本文基于分子动力学方法模拟金刚石刀具纳米切削单晶硅, 从刀具的弹塑性变形、CC键断裂对碳原子结构的影响以及金刚石刀具的石墨化磨损等方面对金刚石刀具的磨损进行分析, 采用配位数法和6元环法表征刀具上的磨损碳原子. 模拟结果表明: 在纳米切削过程中, 金刚石刀具表层CC键的断裂使其两端碳原子由sp3杂化转变为sp2杂化, 同时, 表面上的杂化结构发生变化的碳原子与其第一近邻的sp2杂化碳原子所构成的区域发生平整, 由金刚石的立体网状结构转变为石墨的平面结构, 导致金刚石刀具发生磨损; 刀具表面低配位数碳原子的重构使其近邻区域产生扭曲变形, CC键键能随之减弱, 在高温和高剪切应力的作用下, 极易发生断裂; 在切削刃的棱边上, 由于表面碳原子的配位严重不足, 断开较少的CC键就可以使表面6 元环中碳原子的配位数都小于4, 导致金刚石刀具发生石墨化磨损.
    It is well known that diamond is one of the most ideal cutting tool for materials, but the rapid tool wear can make surface integrity of the machined surface decline sharply during the nanometric cutting process for a single crystal silicon. Thus, a research on the wear mechanism of the diamond tool is of tremendous importance for selecting measures to reduce tool wear so as to extend service life of the tool. In this paper, the molecular dynamics simulation is applied to investigating the wear of the diamond tool during nanometric cutting for the single crystal silicon. Tersoff potential is used to describe the CC and SiSi interactions, and also the Morse potential for the CSi interaction. The rake and flank faces are diamond (111) and (112) planes respectively. A new method, by the name of 6-ring, is proposed to describe the bond change of carbon atoms. This new method can extract, all the worn carbon atoms in diamond tool, whose accuracy is higher than the conventional coordination number method. Moreover, the graphitized carbon atoms in the diamond tool also can be extracted by the combination of these two methods. Results show that during the cutting process, the CC bond's breaking in the surface layer of the diamond tool leads to the transformation of hybrid structure of the carbon atoms at both ends of the broken bond, from sp3 to sp2. Following to the bond breaking, the bond angle between the surface carbon atoms increases to 119.3 whose hybrid structure has changed, and the length between nearest neighboring atoms quickly decreases to 0.144 nm, indicating that the space structure formed by these carbon atoms has changed from 3D net structure of diamond to plane structure of graphite. Hence, the carbon atoms in the tool surface whose space structure has changed due to bond breaking should be defined as worn carbon atoms, but not only the carbon atoms whose hybrid structure has changed. The structure defects at both edges of the diamond tool are much more serious, which make the energy of CC bonds at the edges weakened with the enhancement of defects. The bonds with lower energy are broken under the effect of high temperature and shear stress, which also produces the tool wear. The graphitization occurs at the tool of the cutting tool because the structure defects there are the most serious. The reconstruction of the carbon atoms with lower coordination number causes its neighboring region to produce serious distortion, which leads to easy breaking of CC bonds in this region.
      通信作者: 张鹏, zphit@hit.edu.cn
    • 基金项目: 中国博士后科学基金 (批准号: 2013M541362)和黑龙江省自然科学基金 (批准号: E201308)资助的课题.
      Corresponding author: Zhang Peng, zphit@hit.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2013M541362), and the Natural Science Foundation of Heilongjiang Province, China (Grant No. E201308).
    [1]

    Narulkar R, Bukkapatnam S, Raff L M, Komanduri R 2009 Comp. Mater. Sci. 45 358

    [2]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [3]

    Fang F Z, Zhang G X 2003 Int. J. Adv. Manuf. Technol. 22 703

    [4]

    Yan J W, Asami T, Harada H, Kuriyagawa T 2012 Ann. CIRP 61 131

    [5]

    Yan J W, Zhang Z Y, Kuriyagawa T 2009 Int. J. Mach. Tool Manu. 49 366

    [6]

    Yan J W, Syoji K, Tamaki J 2003 Wear 255 1380

    [7]

    Uddin M S, Seah K H W, Li X P, Rahman M, Liu K 2004 Wear 257 751

    [8]

    Zong W J, Sun T, Li D, Cheng K, Liang Y C 2008 Int. J. Mach. Tool Manu. 48 1678

    [9]

    Cheng K, Luo X, Ward R, Holt R 2003 Wear 255 1427

    [10]

    Li X P, He T, Rahman M 2005 Wear 259 1207

    [11]

    Jia P, Zhou M 2012 Chin. J. Mech. Eng-En. 25 1224

    [12]

    Yang N, Zong W J, Li Z Q, Sun T 2015 Int. J. Adv. Manuf. Technol. 77 1029

    [13]

    Zong W J, Zhang J J, Liu Y, Sun T 2014 Appl. Surf. Sci. 316 617

    [14]

    Goel S, Luo X C, Reuben R L 2013 Tribol. Int. 57 272

    [15]

    Cao S Y 2013 M. S. Thesis (Qinghuangdao: Yanshan University) (in Chinese) [曹思宇 2013 硕士学位论文 (秦皇岛: 燕山大学)]

    [16]

    Zong W J, Li Z Q, Sun T, Li D, Cheng K 2010 J. Mater. Process. Tech. 210 858

    [17]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [18]

    Cai M B, Li X P, Rahman M 2007 Wear 263 1459

    [19]

    [2014]

    [20]

    Yan J W, Asami T, Harada H, Kuriyagawa T 2009 Precis. Eng. 33 378

    [21]

    Kuznetsov V L, Zilberberg I L, Butenko Y V, Chuvilin A L, Segall B 1999 J. Appl. Phys. 86 863

    [22]

    Gogotsi Y G, Kailer A, Nickel K G 1999 Nature 401 663

    [23]

    Chacham H, Kleinman L 2000 Phys. Rev. Lett. 85 4904

    [24]

    Liu F B, Wang J D, Chen D R, Zhao M, He G P 2010 Acta Phys. Sin. 59 6556(in Chinese) [刘峰斌, 汪家道, 陈大融, 赵明, 何广平 2010 59 6556]

    [25]

    Gilman J J 1995 Czech. J. Phys. 45 913

    [26]

    Shamsa M, Liu W L, Balandin A A, Casiraghi C, Milne W I, Ferrari A C 2006 Appl. Phys. Lett. 89 161921

    [27]

    Li L S, Zhao X 2011 J. Chem. Phys. 134 044711

    [28]

    Qin Y H, Tang C, Zhang C X, Meng L J, Zhong J X 2015 Acta Phys. Sin. 64 016804(in Chinese) [覃业宏, 唐超, 张春小, 孟利军, 钟键新 2015 64 016804]

    [29]

    Ge Y F, Xu J H, Yang H 2010 Wear 269 699

    [30]

    Zhang J G 2010 M. S. Thesis (Harbin: Harbin Institue of Technology) (in Chinese) [张建国 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [31]

    Gippius A A, Khmelnitsky R A, Dravin V A, Khomich A V 2001 Physica B 308-310 573

  • [1]

    Narulkar R, Bukkapatnam S, Raff L M, Komanduri R 2009 Comp. Mater. Sci. 45 358

    [2]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [3]

    Fang F Z, Zhang G X 2003 Int. J. Adv. Manuf. Technol. 22 703

    [4]

    Yan J W, Asami T, Harada H, Kuriyagawa T 2012 Ann. CIRP 61 131

    [5]

    Yan J W, Zhang Z Y, Kuriyagawa T 2009 Int. J. Mach. Tool Manu. 49 366

    [6]

    Yan J W, Syoji K, Tamaki J 2003 Wear 255 1380

    [7]

    Uddin M S, Seah K H W, Li X P, Rahman M, Liu K 2004 Wear 257 751

    [8]

    Zong W J, Sun T, Li D, Cheng K, Liang Y C 2008 Int. J. Mach. Tool Manu. 48 1678

    [9]

    Cheng K, Luo X, Ward R, Holt R 2003 Wear 255 1427

    [10]

    Li X P, He T, Rahman M 2005 Wear 259 1207

    [11]

    Jia P, Zhou M 2012 Chin. J. Mech. Eng-En. 25 1224

    [12]

    Yang N, Zong W J, Li Z Q, Sun T 2015 Int. J. Adv. Manuf. Technol. 77 1029

    [13]

    Zong W J, Zhang J J, Liu Y, Sun T 2014 Appl. Surf. Sci. 316 617

    [14]

    Goel S, Luo X C, Reuben R L 2013 Tribol. Int. 57 272

    [15]

    Cao S Y 2013 M. S. Thesis (Qinghuangdao: Yanshan University) (in Chinese) [曹思宇 2013 硕士学位论文 (秦皇岛: 燕山大学)]

    [16]

    Zong W J, Li Z Q, Sun T, Li D, Cheng K 2010 J. Mater. Process. Tech. 210 858

    [17]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [18]

    Cai M B, Li X P, Rahman M 2007 Wear 263 1459

    [19]

    [2014]

    [20]

    Yan J W, Asami T, Harada H, Kuriyagawa T 2009 Precis. Eng. 33 378

    [21]

    Kuznetsov V L, Zilberberg I L, Butenko Y V, Chuvilin A L, Segall B 1999 J. Appl. Phys. 86 863

    [22]

    Gogotsi Y G, Kailer A, Nickel K G 1999 Nature 401 663

    [23]

    Chacham H, Kleinman L 2000 Phys. Rev. Lett. 85 4904

    [24]

    Liu F B, Wang J D, Chen D R, Zhao M, He G P 2010 Acta Phys. Sin. 59 6556(in Chinese) [刘峰斌, 汪家道, 陈大融, 赵明, 何广平 2010 59 6556]

    [25]

    Gilman J J 1995 Czech. J. Phys. 45 913

    [26]

    Shamsa M, Liu W L, Balandin A A, Casiraghi C, Milne W I, Ferrari A C 2006 Appl. Phys. Lett. 89 161921

    [27]

    Li L S, Zhao X 2011 J. Chem. Phys. 134 044711

    [28]

    Qin Y H, Tang C, Zhang C X, Meng L J, Zhong J X 2015 Acta Phys. Sin. 64 016804(in Chinese) [覃业宏, 唐超, 张春小, 孟利军, 钟键新 2015 64 016804]

    [29]

    Ge Y F, Xu J H, Yang H 2010 Wear 269 699

    [30]

    Zhang J G 2010 M. S. Thesis (Harbin: Harbin Institue of Technology) (in Chinese) [张建国 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [31]

    Gippius A A, Khmelnitsky R A, Dravin V A, Khomich A V 2001 Physica B 308-310 573

  • [1] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析.  , 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [2] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟.  , 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [3] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [4] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究.  , 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [5] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究.  , 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [6] 马文, 陆彦文. 纳米多晶铜中冲击波阵面的分子动力学研究.  , 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [7] 兰惠清, 徐藏. 掺硅类金刚石薄膜摩擦过程的分子动力学模拟.  , 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [8] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究.  , 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [9] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟.  , 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [10] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究.  , 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [11] 梁迎春, 盆洪民, 白清顺, 卢礼华. 基于桥域理论的Cu单晶纳米切削跨尺度仿真研究.  , 2011, 60(10): 100205. doi: 10.7498/aps.60.100205
    [12] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究.  , 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [13] 王伟, 张凯旺, 孟利军, 李中秋, 左学云, 钟建新. 多壁碳纳米管外壁高温蒸发的分子动力学模拟.  , 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [14] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟.  , 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [15] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟.  , 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [16] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究.  , 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [17] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟.  , 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [18] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟.  , 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
    [19] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟.  , 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [20] 戴永兵, 沈荷生, 张志明, 何贤昶, 胡晓君, 孙方宏, 莘海维. 金刚石/硅(001)异质界面的分子动力学模拟研究.  , 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
计量
  • 文章访问数:  7080
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-08
  • 修回日期:  2015-07-09
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map