搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu/CeO2(110)界面特性的第一性原理研究

路战胜 李沙沙 陈晨 杨宗献

引用本文:
Citation:

Cu/CeO2(110)界面特性的第一性原理研究

路战胜, 李沙沙, 陈晨, 杨宗献

A first-principle study on the interfacial properties of Cu/CeO2(110)

Lu Zhan-Sheng, Li Sha-Sha, Chen Chen, Yang Zong-Xian
PDF
导出引用
  • Cu-CeO2体系因其特殊的催化能力而在固体氧化物燃料电池和水煤气转化反应等多个催化领域有重要应用. 采用基于密度泛函理论的第一性原理方法, 在原子和电子层面上系统地研究了单个Cu原子及Cu小团簇在CeO2(110)面上的吸附构型, 价键特性和电子结构, 结果表明: 1) 单个Cu原子的最稳定吸附位是两个表面O的桥位; 2) Cu团簇的稳定吸附构型为扭曲的四面体结构; 3) Cu原子及Cu团簇的吸附在CeO2(110)面的gap区域引入了间隙态, 这些间隙态主要来自于Cu及其近邻的O和表层还原形成的Ce3+, 间隙态的出现表明Cu的吸附增强了CeO2(110)表面的活性; 4) 吸附的单个Cu原子及Cu团簇分别被CeO2(110)面表层的Ce4+离子氧化形成了Cuδ+和Cu4δ+, 并伴随着Ce3+离子的形成, 这个反应可归结为Cux/Ce4+→Cuxδ+/Ce3+; 5) Cu团簇的吸附比Cu单原子的吸附引入了更多的Ce3+离子, 进而形成了更多的Cuδ+-Ce3+催化活性中心. 结合已报道的Cu/CeO2(111)界面特性, 更加全面地探明了Cu与CeO2(111)和(110)两个较稳定低指数表面的协同作用特性, 较为系统地揭示了Cu增强CeO2催化特性的原因及Cu与CeO2协同作用的内在机理.
    Cu-CeO2 systems are widely used in solid oxide fuel cells and water gas shift reaction because of its special catalytic ability. The interfacial properties of the Cu/CeO2 (110) with the adsorption of Cu atom and Cu cluster are investigated in terms of first-principles based on density functional theory. It is found that: 1) the single Cu adatom prefers to be adsorbed on the oxygen bridge site; 2) the adsorbed tetrahedron structure of Cu4 cluster is the most stable cluster configuration on CeO2(110) surface; 3) the metal-introduced gap states in the gap area are mainly from the adsorbed Cu (cluster), its neighboring oxygcr and the reduced cerium ion(s), indicating that the activity of CeO2(110) surface is improved by copper adsorption; 4) the adsorbed Cu adatom and Cu4 cluster are oxidized to Cuδ+ and Cu4δ+ by their neighboring Ce ion(s) with the formation of Ce3+ ion(s), the reaction could be summarized as Cux/Ce4+→ Cuxδ+/Ce3+; 5) the adsorption of small clusters introduces more Ce3+ ions than a single Cu atom does, indicating that more Cuδ+-Ce3+ catalytic active centers are formed. The current study on Cu/CeO2(110) together with our previous results on Cu/CeO2(111) presents a good understanding of the synergies between Cu and ceria, and reveals the improvement of the activity of ceria by Cu adsorption.
    • 基金项目: 国家自然科学基金(批准号: 11174070, 11147006)、中国博士后科学基金和河南省博士后科学基金 (批准号: 2012M521399, 2011038) 和河南师范大学校级青年骨干教师和博士启动基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11147006, 11174070), the China Postdoctoral Science Foundation funded project (Grant No. 2012M521399) and Postdoctoral Research sponsorship in Henan Province, China (Grant No. 2011038), the Foundation for the Key Young Teachers of Henan Normal University and Start-up Foundation for Doctors of Henan Normal University, China.
    [1]

    Park J B, Graciani J, Evans J, Stacchiola D, Senanayake S D, Barrio L, Liu P, Sanz J F, Hrbek J, Rodriguez J A 2009 J. Am. Chem. Soc. 132 356

    [2]

    Yang F, Graciani J s, Evans J, Liu P, Hrbek J, Sanz J F, Rodriguez J A 2011 J. Am. Chem. Soc. 133 3444

    [3]

    Gamarra D, Munuera G, Hungría A, Fernández-García M, Conesa J, Midgley P, Wang X, Hanson J, Rodríguez J, Martínez-Arias A 2007 J. Phys. Chem. C 111 11026

    [4]

    Kydd R, Teoh W Y, Wong K, Wang Y, Scott J, Zeng Q H, Yu A B, Zou J, Amal R 2008 Adv. Funct. Mater. 19 369

    [5]

    Yen H, Seo Y, Kaliaguine S, Kleitz F 2012 Angew. Chem. Int. Edit. 51 12032

    [6]

    Kim T, Liu G, Boaro M, Lee S I, Vohs J M, Gorte R J, Al-Madhi O, Dabbousi B 2006 J. Power Sources 155 231

    [7]

    He H, Gorte R J, Vohs J M 2005 Electrochem. Solid-State Lett. 8 A279

    [8]

    Yang Z X, Xie L G, Ma D W, Wang G T 2011 J. Phys. Chem. C 115 6730

    [9]

    Yang Z X, Wang Q T, Wei S Y 2011 Phys. Chem. Chem. Phys. 13 9363

    [10]

    Lu Z S, Yang Z X, Hermansson K 2011 Advanced Materials Research 213 166

    [11]

    Yang Z X, He B L, Lu Z S, Hermansson K 2010 J. Phys. Chem. C 114 4486

    [12]

    Branda M M, Hernández N C, Sanz J F, Illas F 2010 J. Phys. Chem. C 114 1934

    [13]

    Lu Z S, Yang Z X, He B L, Castleton C, Hermansson K 2011 Chem. Phys. Lett. 510 60

    [14]

    Tang Y H, Zhang H, Cui L X, Ouyang C, Shi S Q, Tang W H, Li H, Chen L Q 2012 J. Power Sources 197 10

    [15]

    Lu Z S, L G X, Yang Z X 2007 Acta Phys. Sin. 56 5382 (in Chinese) [路战胜, 罗改霞, 杨宗献 2007 56 5382]

    [16]

    Szabová L, Camellone M F, Huang M, Matolín V, Fabris S 2010 J. Chem. Phys. 133 234705

    [17]

    Nolan M, Parker S C, Watson G W 2005 Surf. Sci. 595 223

    [18]

    Nolan M, Grigoleit S, Sayle D C, Parker S C, Watson G W 2005 Surf. Sci. 576 217

    [19]

    Cui L X, Tang Y H, Zhang H, Hector L G, Ouyang C, Shi S Q, Li H, Chen L Q 2012 Phys. Chem. Chem. Phys. 14 1923

    [20]

    Matolin V, Sedlacek L, Matolinova I, Šutara F, Skála T, Šmíd B, Libra J, Nehasil V, Prince K C 2008 J. Phys. Chem. C 112 3751

    [21]

    Hornés A, Hungría A B, Bera P, Cámara A L, Fernández-García M, Martínez-Arias A, Barrio L, Estrella M, Zhou G, Fonseca J J, Hanson J C, Rodriguez J A 2009 J. Am. Chem. Soc. 132 34

    [22]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [23]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Fabris S, de Gironcoli S, Baroni S, Vicario G, Balducci G 2005 Phys. Rev. B 71 041102(R)

    [27]

    Yang Z X, Woo T K, Hermansson K 2006 J. Chem. Phys. 124 224704

    [28]

    Castleton C W M, Kullgren J, Hermansson K 2007 J. Chem. Phys. 127 244704

    [29]

    Kmmerle E A, Heger G 1999 J. Solid State Chem. 147 485

    [30]

    Lu Z S, Kullgren J, Yang Z X, Hermansson K 2012 J. Phys. Chem. C 116 8417

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [32]

    Lippmann T, Schneider J R 2000 J. Appl. Crystallogr. 33 156

    [33]

    Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354

    [34]

    Ganduglia-Pirovano M V, Da Silva J L F, Sauer J 2009 Phys. Rev. Lett. 102 26101

    [35]

    Kim H Y, Lee H M, Henkelman G 2012 J. Am. Chem. Soc. 134 1560

    [36]

    Lu Z S, Yang Z X, 2010 J. Phys.: Condens. Matter 22 475003

  • [1]

    Park J B, Graciani J, Evans J, Stacchiola D, Senanayake S D, Barrio L, Liu P, Sanz J F, Hrbek J, Rodriguez J A 2009 J. Am. Chem. Soc. 132 356

    [2]

    Yang F, Graciani J s, Evans J, Liu P, Hrbek J, Sanz J F, Rodriguez J A 2011 J. Am. Chem. Soc. 133 3444

    [3]

    Gamarra D, Munuera G, Hungría A, Fernández-García M, Conesa J, Midgley P, Wang X, Hanson J, Rodríguez J, Martínez-Arias A 2007 J. Phys. Chem. C 111 11026

    [4]

    Kydd R, Teoh W Y, Wong K, Wang Y, Scott J, Zeng Q H, Yu A B, Zou J, Amal R 2008 Adv. Funct. Mater. 19 369

    [5]

    Yen H, Seo Y, Kaliaguine S, Kleitz F 2012 Angew. Chem. Int. Edit. 51 12032

    [6]

    Kim T, Liu G, Boaro M, Lee S I, Vohs J M, Gorte R J, Al-Madhi O, Dabbousi B 2006 J. Power Sources 155 231

    [7]

    He H, Gorte R J, Vohs J M 2005 Electrochem. Solid-State Lett. 8 A279

    [8]

    Yang Z X, Xie L G, Ma D W, Wang G T 2011 J. Phys. Chem. C 115 6730

    [9]

    Yang Z X, Wang Q T, Wei S Y 2011 Phys. Chem. Chem. Phys. 13 9363

    [10]

    Lu Z S, Yang Z X, Hermansson K 2011 Advanced Materials Research 213 166

    [11]

    Yang Z X, He B L, Lu Z S, Hermansson K 2010 J. Phys. Chem. C 114 4486

    [12]

    Branda M M, Hernández N C, Sanz J F, Illas F 2010 J. Phys. Chem. C 114 1934

    [13]

    Lu Z S, Yang Z X, He B L, Castleton C, Hermansson K 2011 Chem. Phys. Lett. 510 60

    [14]

    Tang Y H, Zhang H, Cui L X, Ouyang C, Shi S Q, Tang W H, Li H, Chen L Q 2012 J. Power Sources 197 10

    [15]

    Lu Z S, L G X, Yang Z X 2007 Acta Phys. Sin. 56 5382 (in Chinese) [路战胜, 罗改霞, 杨宗献 2007 56 5382]

    [16]

    Szabová L, Camellone M F, Huang M, Matolín V, Fabris S 2010 J. Chem. Phys. 133 234705

    [17]

    Nolan M, Parker S C, Watson G W 2005 Surf. Sci. 595 223

    [18]

    Nolan M, Grigoleit S, Sayle D C, Parker S C, Watson G W 2005 Surf. Sci. 576 217

    [19]

    Cui L X, Tang Y H, Zhang H, Hector L G, Ouyang C, Shi S Q, Li H, Chen L Q 2012 Phys. Chem. Chem. Phys. 14 1923

    [20]

    Matolin V, Sedlacek L, Matolinova I, Šutara F, Skála T, Šmíd B, Libra J, Nehasil V, Prince K C 2008 J. Phys. Chem. C 112 3751

    [21]

    Hornés A, Hungría A B, Bera P, Cámara A L, Fernández-García M, Martínez-Arias A, Barrio L, Estrella M, Zhou G, Fonseca J J, Hanson J C, Rodriguez J A 2009 J. Am. Chem. Soc. 132 34

    [22]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [23]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Fabris S, de Gironcoli S, Baroni S, Vicario G, Balducci G 2005 Phys. Rev. B 71 041102(R)

    [27]

    Yang Z X, Woo T K, Hermansson K 2006 J. Chem. Phys. 124 224704

    [28]

    Castleton C W M, Kullgren J, Hermansson K 2007 J. Chem. Phys. 127 244704

    [29]

    Kmmerle E A, Heger G 1999 J. Solid State Chem. 147 485

    [30]

    Lu Z S, Kullgren J, Yang Z X, Hermansson K 2012 J. Phys. Chem. C 116 8417

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [32]

    Lippmann T, Schneider J R 2000 J. Appl. Crystallogr. 33 156

    [33]

    Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354

    [34]

    Ganduglia-Pirovano M V, Da Silva J L F, Sauer J 2009 Phys. Rev. Lett. 102 26101

    [35]

    Kim H Y, Lee H M, Henkelman G 2012 J. Am. Chem. Soc. 134 1560

    [36]

    Lu Z S, Yang Z X, 2010 J. Phys.: Condens. Matter 22 475003

  • [1] 张英楠, 张敏, 张派, 胡文博. 基于第一性原理GGA+U方法研究Si掺杂β-Ga2O3电子结构和光电性质.  , 2024, 73(1): 017102. doi: 10.7498/aps.73.20231147
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [3] 肖美霞, 冷浩, 宋海洋, 王磊, 姚婷珍, 何成. 有机分子吸附和衬底调控锗烯的电子结构.  , 2021, 70(6): 063101. doi: 10.7498/aps.70.20201657
    [4] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , 2021, (): . doi: 10.7498/aps.70.20211631
    [5] 王小卡, 汤富领, 薛红涛, 司凤娟, 祁荣斐, 刘静波. H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算.  , 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [6] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究.  , 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [7] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解.  , 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [8] 贺艳斌, 贾建峰, 武海顺. N2H4在NiFe(111)合金表面吸附稳定性和电子结构的第一性原理研究.  , 2015, 64(20): 203101. doi: 10.7498/aps.64.203101
    [9] 范航, 王珊珊, 李玉红. 二氧化铀电子结构和弹性性质的第一性原理研究.  , 2015, 64(9): 097101. doi: 10.7498/aps.64.097101
    [10] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO.  , 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [11] 杜玉杰, 常本康, 王晓晖, 张俊举, 李飙, 付小倩. Cs/GaN(0001)吸附体系电子结构和光学性质研究.  , 2012, 61(5): 057102. doi: 10.7498/aps.61.057102
    [12] 张宇飞, 郭志友, 曹东兴. ZnO(0001)表面吸附B的电子结构和光学性质研究.  , 2011, 60(6): 066802. doi: 10.7498/aps.60.066802
    [13] 黄平, 杨春. TiO2分子在GaN(0001)表面吸附的理论研究.  , 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [14] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究.  , 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [15] 张建军, 张红. Al吸附在Pt, Ir和Au的(111)面的低覆盖度研究.  , 2010, 59(6): 4143-4149. doi: 10.7498/aps.59.4143
    [16] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究.  , 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [17] 陈国栋, 王六定, 张教强, 曹得财, 安 博, 丁富才, 梁锦奎. 掺硼水吸附碳纳米管电子场发射性能的第一性原理研究.  , 2008, 57(11): 7164-7167. doi: 10.7498/aps.57.7164
    [18] 魏彦薇, 杨宗献. Au在Zr掺杂的CeO2(110)面吸附的第一性原理研究.  , 2008, 57(11): 7139-7144. doi: 10.7498/aps.57.7139
    [19] 路战胜, 罗改霞, 杨宗献. Pd与CeO2(111)面的相互作用的第一性原理研究.  , 2007, 56(9): 5382-5388. doi: 10.7498/aps.56.5382
    [20] 杨 春, 李言荣, 颜其礼, 刘永华. α-Al2O3(0001)表面原子缺陷对ZnO吸附影响.  , 2005, 54(5): 2364-2368. doi: 10.7498/aps.54.2364
计量
  • 文章访问数:  7457
  • PDF下载量:  1893
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-06
  • 修回日期:  2013-02-03
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map