搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴撞击加热壁面传热实验研究

沈胜强 张洁珊 梁刚涛

引用本文:
Citation:

液滴撞击加热壁面传热实验研究

沈胜强, 张洁珊, 梁刚涛

Experimental study of heat transfer from droplet impact on a heated surface

Shen Sheng-Qiang, Zhang Jie-Shan, Liang Gang-Tao
PDF
导出引用
  • 本文采用高速摄像仪对水滴和乙醇液滴撞击加热壁面后的蒸发过程进行了实验观测, 分析了液滴撞击加热壁面后的蒸发特性参数. 实验中, 两种液体初始温度均为20 ℃, 不锈钢壁面初始温度范围为68-126℃. 水滴初始直径为2.07 mm, 撞击壁面时Weber 数为2-44; 乙醇液滴初始直径为1.64 mm, Weber数为3-88. 结果表明, 液滴受到重力、表面张力及流动性的影响, 在蒸发过程的大部分时间内, 水滴高度持续降低而接触直径几乎不变; 蒸发后期, 液滴发生回缩, 水滴的接触直径、高度和接触角出现振荡现象. 乙醇液滴的接触角随时间的增加呈现先减小随后保持不变的趋势, 而接触直径和高度则持续减小, 直到液滴完全蒸发. 液滴蒸发总时长与液体物性和壁面温度有关, 随壁面温度的升高而减小, 与液滴撞击壁面时的Weber 数无关. 同时, 随着壁面温度的升高, 液滴显热部分占总换热量的比重增大, 显热部分能量不可忽略, 本文实验条件下得到水滴的平均热流密度为0.014-0.110 Wmm-2.
    Droplets impact on surfaces exist widely in industrial equipments, such as spraying cooling, ink jet printing, oil drops impact on walls in combustion chamber, brine droplets impact on heat transfer tubes in horizontal-tube falling film evaporators etc. In particular, for the droplets impinging on heated surfaces, the contact scale and the heat transfer flux affect the cooling of the hot surfaces greatly. In this work, evaporation processes of water and ethanol droplets impact on a heated surface are observed using a high-speed digital camera with a capacity of 106 frames per second. The corresponding evaporation parameters including the contact diameter, the droplet height, the contact angle, and heat flux are analyzed. The initial liquid temperature keeps constant at 20 ℃, and the initial surface temperature varies in the range of 68-126 ℃. Diameters of single water droplets and ethanol droplets are 2.07 and 1.64 mm, respectively. The impact Weber number of water droplets ranges from 2 to 44 while that of ethanol droplets ranges from 3 to 88. The present results show that due to the coupled effects of gravity, surface tension, fluid flow and evaporation processes, the height of water droplets reduces continuously while the contact diameter almost does not change during the most part of evaporation time. In the later stage of evaporation, the contact diameter, height and contact angle of water droplets oscillate, mainly because of droplet retraction. The critical contact angle for water droplets retraction is in the range of 4-8. The contact angle of ethanol droplets first reduces and then remains constant, while the contact diameter and the height decrease continuously. The droplet evaporation time depends on liquid properties and the surface temperature, and the Weber number effect is minor. The evaporation time decreases with the increase in the surface temperature. At the same time, with increasing surface temperature, the ratio between the sensible heat and the total heat increases, and this part of heat cannot be neglected from the total heat transfer calculation. Based on the present experimental conditions, the average heat flux for the water droplets ranges from 0.014 to 0.110 Wmm-2 in this work.
    • 基金项目: 国家自然科学基金重点项目(批准号:51336001)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51336001).
    [1]

    Liang G T Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705 (in Chinese) [梁刚涛, 郭亚丽, 沈胜强 2013 62 024705]

    [2]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [3]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 61 054701]

    [4]

    Zhang N, Yang W J 1983 Exp. Fluids 1 101

    [5]

    Seki M, Kawamura H, Sanokawa K 1978 J. Heat Trans-T ASME 100 167

    [6]

    Pasandideh-Fard M, Aziz S D, Chandra S, Mostaghimi J 2001 Int. J. Heat Fluid Fl. 22 201

    [7]

    Lu G, Peng X F, Feng Y H 2009 J. Therm. Sci. Technol.8 198 (in Chinese) [陆规, 彭晓峰, 冯妍卉2009 热科学与技术8 198]

    [8]

    Rymkiewicz J, Zapalowicz Z 1993 Int. Commun. Heat Mass 20 687

    [9]

    Bernardin J D, Mudawar I, Walsh C B, Franses E I 1997 Int. J. Heat Mass Tran. 40 1017

    [10]

    Girard F, Antoni M, Sefiane K 2010 Langmuir 26 4576

    [11]

    Crafton E F, Black W Z 2004 Int. J. Heat Mass Tran. 47 1187

    [12]

    Chandra S, Di Marzo M, Qiao Y M, Tartarini P 1996 Fire Safety J. 27 141

    [13]

    Moita A S, Moreira A L N 2007 Int. J. Heat Fluid Fl. 28 735

    [14]

    Ruiz O E, Black W Z 2002 J. Heat Trans.-T. ASME 124 854

    [15]

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 184703 (in Chinese) [梁刚涛, 郭亚丽, 沈胜强 2013 62 184703]

    [16]

    Eral H B, Oh J M 2013 Colloid Polym. Sci. 291 247

  • [1]

    Liang G T Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705 (in Chinese) [梁刚涛, 郭亚丽, 沈胜强 2013 62 024705]

    [2]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [3]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 61 054701]

    [4]

    Zhang N, Yang W J 1983 Exp. Fluids 1 101

    [5]

    Seki M, Kawamura H, Sanokawa K 1978 J. Heat Trans-T ASME 100 167

    [6]

    Pasandideh-Fard M, Aziz S D, Chandra S, Mostaghimi J 2001 Int. J. Heat Fluid Fl. 22 201

    [7]

    Lu G, Peng X F, Feng Y H 2009 J. Therm. Sci. Technol.8 198 (in Chinese) [陆规, 彭晓峰, 冯妍卉2009 热科学与技术8 198]

    [8]

    Rymkiewicz J, Zapalowicz Z 1993 Int. Commun. Heat Mass 20 687

    [9]

    Bernardin J D, Mudawar I, Walsh C B, Franses E I 1997 Int. J. Heat Mass Tran. 40 1017

    [10]

    Girard F, Antoni M, Sefiane K 2010 Langmuir 26 4576

    [11]

    Crafton E F, Black W Z 2004 Int. J. Heat Mass Tran. 47 1187

    [12]

    Chandra S, Di Marzo M, Qiao Y M, Tartarini P 1996 Fire Safety J. 27 141

    [13]

    Moita A S, Moreira A L N 2007 Int. J. Heat Fluid Fl. 28 735

    [14]

    Ruiz O E, Black W Z 2002 J. Heat Trans.-T. ASME 124 854

    [15]

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 184703 (in Chinese) [梁刚涛, 郭亚丽, 沈胜强 2013 62 184703]

    [16]

    Eral H B, Oh J M 2013 Colloid Polym. Sci. 291 247

  • [1] 春江, 王瑾萱, 徐晨, 温荣福, 兰忠, 马学虎. 液滴撞击超亲水表面的最大铺展直径预测模型.  , 2021, 70(10): 106801. doi: 10.7498/aps.70.20201918
    [2] 刘联胜, 刘轩臣, 贾文琪, 田亮, 杨华, 段润泽. 小液滴撞击壁面传热特性数值分析.  , 2021, 70(7): 074402. doi: 10.7498/aps.70.20201354
    [3] 沈学峰, 曹宇, 王军锋, 刘海龙. 剪切变稀液滴撞击不同浸润性壁面的数值模拟研究.  , 2020, 69(6): 064702. doi: 10.7498/aps.69.20191682
    [4] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性.  , 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [5] 赵可, 佘阳梓, 蒋彦龙, 秦静, 张振豪. 液氮滴撞击壁面相变行为的数值研究.  , 2019, 68(24): 244401. doi: 10.7498/aps.68.20190945
    [6] 荣松, 沈世全, 王天友, 车志钊. 液滴撞击加热壁面雾化弹起模式及驻留时间.  , 2019, 68(15): 154701. doi: 10.7498/aps.68.20190097
    [7] 郑志伟, 李大树, 仇性启, 崔运静. 中空液滴碰撞水平壁面数值分析.  , 2017, 66(1): 014704. doi: 10.7498/aps.66.014704
    [8] 高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊. 双液滴同时垂直撞击壁面的数值研究.  , 2017, 66(2): 024702. doi: 10.7498/aps.66.024702
    [9] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟.  , 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [10] 叶学民, 李永康, 李春曦. 受热基底上的液滴铺展及换热特性.  , 2016, 65(23): 234701. doi: 10.7498/aps.65.234701
    [11] 李大树, 仇性启, 郑志伟. 液滴碰撞液膜润湿壁面空气夹带数值分析.  , 2015, 64(22): 224704. doi: 10.7498/aps.64.224704
    [12] 戴剑锋, 樊学萍, 蒙波, 刘骥飞. 单液滴撞击倾斜液膜飞溅过程的耦合Level Set-VOF模拟.  , 2015, 64(9): 094704. doi: 10.7498/aps.64.094704
    [13] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究.  , 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [14] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性.  , 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [15] 蒋涛, 陆林广, 陆伟刚. 等直径微液滴碰撞过程的改进光滑粒子动力学模拟.  , 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [16] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟.  , 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [17] 李大鸣, 王志超, 白玲, 王笑. 液滴撞击孔口附近壁面运动过程的模拟研究.  , 2013, 62(19): 194704. doi: 10.7498/aps.62.194704
    [18] 梁刚涛, 沈胜强, 郭亚丽, 陈觉先, 于欢, 李熠桥. 实验观测液滴撞击倾斜表面液膜的特殊现象.  , 2013, 62(8): 084707. doi: 10.7498/aps.62.084707
    [19] 梁刚涛, 郭亚丽, 沈胜强. 液滴撞击液膜的射流与水花形成机理分析.  , 2013, 62(2): 024705. doi: 10.7498/aps.62.024705
    [20] 梁刚涛, 郭亚丽, 沈胜强. 液滴低速撞击润湿球面现象观测分析.  , 2013, 62(18): 184703. doi: 10.7498/aps.62.184703
计量
  • 文章访问数:  6979
  • PDF下载量:  363
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-02
  • 修回日期:  2014-12-25
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map