搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双液滴同时垂直撞击壁面的数值研究

高亚军 姜汉桥 李俊键 赵玉云 胡锦川 常元昊

引用本文:
Citation:

双液滴同时垂直撞击壁面的数值研究

高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊

Simulation investigation of two droplets vertically impacting on solid surface simultaneously

Gao Ya-Jun, Jiang Han-Qiao, Li Jun-Jian, Zhao Yu-Yun, Hu Jin-Chuan, Chang Yuan-Hao
PDF
导出引用
  • 采用质量守恒的level set方法对双液滴同时垂直撞击干壁面后的流动过程进行了模拟研究,主要讨论了韦伯数(We)、壁面接触角(θ)以及双液滴水平间距(S)等物理参数对相界面流动过程的影响,分析了不同参数下射流高度和水平铺展半长随时间的变化规律.研究表明:We数较大时,中心射流液柱将产生二次液滴,随后液柱反弹至空中,且We数越大,中心射流产生的二次液滴次数越多,最大无量纲射流高度和最大无量纲铺展半长越大;随壁面接触角的增大,中心射流液柱出现反弹现象,水平铺展液流出现断裂的时间越早,最大无量纲射流高度和最大无量纲铺展半长越小;最大无量纲射流高度值与液滴水平间距的相关性不单调,铺展半长随水平间距的增大而增大.
    The flow characteristic of the droplets impacting on solid surface is extremely significant for practical engineering applications. The problem is also very complicated since there are many parameters that may influence the process of droplets impacting on a solid surface. Therefore the numerical study of behaviors of droplets impacting on a solid surface is performed in this work. With a given impact velocity, two two-dimensional axisymmetric droplets subsequently interact on the solid surface. To conduct numerical simulations, a mass conserved level set method is adopted, and the gravity and surface tension are taken into consideration in the process of droplet development on the solid surface. The effects of Weber number, surface contact angle, the horizontal distance between the two droplets, and droplet arrangement on the dynamic behaviors of droplet impact are systematically investigated. It is found that two droplets vertically impacting on solid surface simultaneously can produce a columnar liquid jet column, and the horizontally spreading liquid on the solid surface will break up in several segments as time goes by. With the increase of Weber number, the secondary droplets are generated from liquid jet, and the columnar liquid jet rebounds away from the surface subsequently. If the Reynolds number, surface contact angle and the horizontal distance are set to be, respectively, 2000, 90°and 2, in particular, the non-dimensional length of liquid spread is unrelated to Weber number when the non-dimensional time TT>2. Meanwhile, the dynamic change characteristics of the non-dimensional liquid jet height are about the same during the jet rising, but the jet falling time becomes shorter as the Weber number decreases. Obviously, the bigger the Weber number, the bigger the biggest non-dimensional height of liquid jet and length of liquid spread are. On the other hand, with the increase of surface contact angle, the columnar liquid jet rebounds away from the surface and the spreading liquid breaks up much earlier on the surface. Also, the non-dimensional height of liquid jet and length of liquid spread grow with the increase of surface contact angle. In addition, in the case that the Weber number, Reynolds number and surface contact angle are set to be 32, 2000 and 90° respectively, we also find that the correlation between the biggest non-dimensional jet height and horizontal distance is not monotonic. Under the circumstances, the biggest non-dimensional height of liquid jet is achieved when the distance is set to be 2, and the phenomenon of liquid jet rebound occurs subsequently, whether the rebound phenomenon of the jet liquid column is related to the horizontal distance of the droplet or not. And finally, as the horizontal distance between the two droplets increases from 1.5 to 3, the non-dimensional length of liquid spread gradually increases.
      通信作者: 高亚军, gaoyajuncup@163.com
    • 基金项目: 国家重点基础研究发展计划(批准号:2015CB250905)资助的课题.
      Corresponding author: Gao Ya-Jun, gaoyajuncup@163.com
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB250905).
    [1]

    Rioboo R, Bauthier C, Conti J, Voue M, De Coninck J 2003 Exp. Fluids 35 648

    [2]

    Chen R H, Kuo M J, Chiu S L, Pu J Y, Lin T H 2007 J. Mech. Sci. Tech. 21 1886

    [3]

    Sikalo S, Marengo M, Tropea C, Ganic E N 2002 Exp. Therm. Fluid Sci. 25 503

    [4]

    Sikalo S, Tropea C, Ganic E N 2005 Exp. Therm. Fluid Sci. 29 795

    [5]

    Yang B H, Wang H, Zhu X, Ding Y D, Zhou J 2012 CIESC J. 10 3027 (in Chinese)[杨宝海, 王宏, 朱恂, 丁玉栋, 周劲2012化工学报10 3027]

    [6]

    Roisman I V, Prunt-Foch B, Tropea C 2002 J. Colloid Interface Sci. 256 396

    [7]

    Roisman I V, Horvat K, Tropea C 2006 Phys. Fluids 18 102104

    [8]

    Fujimoto H, Ito S, Takezaki I 2002 Exp. Fluids 33 500

    [9]

    Farhangi M M, Graham P J, Choudhury N R, Dolatabadi A 2012 Langmuir 28 1290

    [10]

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese)[郭加宏, 戴世强, 代钦2010 59 2601]

    [11]

    Tanaka Y, Washio Y, Yoshino M, Hirata T 2011 Comput. Fluids 40 68

    [12]

    Wu J, Huang J J, Yan W W 2015 Colloids Surf. A:Physicochem. Eng. Asp. 484 318

    [13]

    Lee S H, Hur N, Kang S 2011 J. Mech. Sci. Technol. 25 2567

    [14]

    Patil N D, Gada V H, Sharma A, Bhardwaj R 2016 Int. J. Multiphase Flow 81 54

    [15]

    Osher S, Sethian J A 1988 J. Comput. Phys. 79 12

    [16]

    Olsson E, Kreiss G 2005 J. Comput. Phys. 210 225

    [17]

    Olsson, E, Kreiss G, Zahedi S 2007 J. Comput. Phys. 225 785

    [18]

    Shepel S V, Smith B L 2006 J. Comput. Phys. 218 479

    [19]

    Zhu Q L, Zhou Q L, Li X C 2016 J. Rock Mech. Geotech Eng. 8 87

    [20]

    Liang C, Wang H, Zhu X, Chen R, Ding Y D, Liao Q 2013 CIESC J. 64 2745 (in Chinese)[梁超, 王宏, 朱恂, 陈蓉, 丁玉栋, 廖强2013化工学报64 2745]

    [21]

    Mao T, Kulum D C S, Tran H 1997 AIChE J. 43 2169

  • [1]

    Rioboo R, Bauthier C, Conti J, Voue M, De Coninck J 2003 Exp. Fluids 35 648

    [2]

    Chen R H, Kuo M J, Chiu S L, Pu J Y, Lin T H 2007 J. Mech. Sci. Tech. 21 1886

    [3]

    Sikalo S, Marengo M, Tropea C, Ganic E N 2002 Exp. Therm. Fluid Sci. 25 503

    [4]

    Sikalo S, Tropea C, Ganic E N 2005 Exp. Therm. Fluid Sci. 29 795

    [5]

    Yang B H, Wang H, Zhu X, Ding Y D, Zhou J 2012 CIESC J. 10 3027 (in Chinese)[杨宝海, 王宏, 朱恂, 丁玉栋, 周劲2012化工学报10 3027]

    [6]

    Roisman I V, Prunt-Foch B, Tropea C 2002 J. Colloid Interface Sci. 256 396

    [7]

    Roisman I V, Horvat K, Tropea C 2006 Phys. Fluids 18 102104

    [8]

    Fujimoto H, Ito S, Takezaki I 2002 Exp. Fluids 33 500

    [9]

    Farhangi M M, Graham P J, Choudhury N R, Dolatabadi A 2012 Langmuir 28 1290

    [10]

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese)[郭加宏, 戴世强, 代钦2010 59 2601]

    [11]

    Tanaka Y, Washio Y, Yoshino M, Hirata T 2011 Comput. Fluids 40 68

    [12]

    Wu J, Huang J J, Yan W W 2015 Colloids Surf. A:Physicochem. Eng. Asp. 484 318

    [13]

    Lee S H, Hur N, Kang S 2011 J. Mech. Sci. Technol. 25 2567

    [14]

    Patil N D, Gada V H, Sharma A, Bhardwaj R 2016 Int. J. Multiphase Flow 81 54

    [15]

    Osher S, Sethian J A 1988 J. Comput. Phys. 79 12

    [16]

    Olsson E, Kreiss G 2005 J. Comput. Phys. 210 225

    [17]

    Olsson, E, Kreiss G, Zahedi S 2007 J. Comput. Phys. 225 785

    [18]

    Shepel S V, Smith B L 2006 J. Comput. Phys. 218 479

    [19]

    Zhu Q L, Zhou Q L, Li X C 2016 J. Rock Mech. Geotech Eng. 8 87

    [20]

    Liang C, Wang H, Zhu X, Chen R, Ding Y D, Liao Q 2013 CIESC J. 64 2745 (in Chinese)[梁超, 王宏, 朱恂, 陈蓉, 丁玉栋, 廖强2013化工学报64 2745]

    [21]

    Mao T, Kulum D C S, Tran H 1997 AIChE J. 43 2169

  • [1] 张晓林, 黄军杰. 楔形体上复合液滴润湿铺展行为的格子Boltzmann方法研究.  , 2023, 72(2): 024701. doi: 10.7498/aps.72.20221472
    [2] 李逢超, 付宇, 李超, 杨建刚, 胡春波. 铝液滴撞击曲面的流动特性分析.  , 2022, 71(18): 184701. doi: 10.7498/aps.71.20220442
    [3] 春江, 王瑾萱, 徐晨, 温荣福, 兰忠, 马学虎. 液滴撞击超亲水表面的最大铺展直径预测模型.  , 2021, 70(10): 106801. doi: 10.7498/aps.70.20201918
    [4] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性.  , 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [5] 李玉杰, 黄军杰, 肖旭斌. 液滴撞击圆柱内表面的数值研究.  , 2018, 67(18): 184701. doi: 10.7498/aps.67.20180364
    [6] 焦云龙, 刘小君, 逄明华, 刘焜. 固体表面液滴铺展与润湿接触线的移动分析.  , 2016, 65(1): 016801. doi: 10.7498/aps.65.016801
    [7] 叶学民, 李永康, 李春曦. 受热基底上的液滴铺展及换热特性.  , 2016, 65(23): 234701. doi: 10.7498/aps.65.234701
    [8] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟.  , 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [9] 沈胜强, 张洁珊, 梁刚涛. 液滴撞击加热壁面传热实验研究.  , 2015, 64(13): 134704. doi: 10.7498/aps.64.134704
    [10] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析.  , 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [11] 李春曦, 陈朋强, 叶学民. 含活性剂液滴在倾斜粗糙壁面上的铺展稳定性.  , 2015, 64(1): 014702. doi: 10.7498/aps.64.014702
    [12] 戴剑锋, 樊学萍, 蒙波, 刘骥飞. 单液滴撞击倾斜液膜飞溅过程的耦合Level Set-VOF模拟.  , 2015, 64(9): 094704. doi: 10.7498/aps.64.094704
    [13] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性.  , 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [14] 梁刚涛, 郭亚丽, 沈胜强. 液滴低速撞击润湿球面现象观测分析.  , 2013, 62(18): 184703. doi: 10.7498/aps.62.184703
    [15] 李春曦, 裴建军, 叶学民. 波纹基底上含不溶性活性剂液滴的铺展稳定性.  , 2013, 62(17): 174702. doi: 10.7498/aps.62.174702
    [16] 邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东. Pb液滴在Ni基底润湿铺展行为的分子动力学模拟.  , 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [17] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟.  , 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [18] 梁刚涛, 郭亚丽, 沈胜强. 液滴撞击液膜的射流与水花形成机理分析.  , 2013, 62(2): 024705. doi: 10.7498/aps.62.024705
    [19] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究.  , 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [20] 杨斌鑫, 欧阳洁, 栗雪娟. 复杂型腔充模中纤维取向的动态模拟.  , 2012, 61(4): 044701. doi: 10.7498/aps.61.044701
计量
  • 文章访问数:  5966
  • PDF下载量:  390
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-14
  • 修回日期:  2016-10-17
  • 刊出日期:  2017-01-20

/

返回文章
返回
Baidu
map