搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FOX-7转晶行为的太赫兹光谱及理论计算研究

孟增睿 张伟斌 杜宇 尚丽平 邓琥

引用本文:
Citation:

FOX-7转晶行为的太赫兹光谱及理论计算研究

孟增睿, 张伟斌, 杜宇, 尚丽平, 邓琥

Terahertz spectrum and simulation of the phase transformation of FOX-7

Meng Zeng-Rui, Zhang Wei-Bin, Du Yu, Shang Li-Ping, Deng Hu
PDF
导出引用
  • 1, 1 -二氨基- 2, 2 -二硝基乙烯(FOX-7)是一款新型高能钝感炸药, 为了研究温度变化对其分子结构特性的影响, 利用太赫兹时域光谱技术对持续升温(298K→393 K)过程中FOX-7 在0.2—2.5 THz 频率范围内的吸收光谱进行了在线探测, 结果发现随着样品温度的升高, FOX-7 的吸收谱带发生变化, 于384 K 时出现一个新的吸收特征峰, 且该吸收峰的峰强逐渐升高. 基于密度泛函理论(DFT), 对样品在298 K 和393 K 温度下的晶体结构进行了小于2.5 THz 范围内吸收频谱的模拟计算, 完成了对FOX-7 两种晶型实验吸收特征峰的指认. 分析表明FOX-7 的分子结构会受温度的影响而发生改变, 互为异构晶型的基团表现出的振动模式不同, 温度384 K 时FOX-7 开始发生α→β 晶型转变, 且该晶型转变过程是可逆的, 新出现的1.12 THz 特征峰在393 K 时的振动是由—NO2 和—NH2 的摆动及各自的扭动所致.
    1, 1-diamino-2, 2-dintroethylene (FOX-7) is a novel explosive of high energy and low sensibility. In order to study the effect of temperature changes on the molecular structural characteristics of the explosive, its absorption spectra in the frequency range of 0.2–2.5 THz at a constant rate of heating from 298 K to 393 K are detected by terahertz time-domain spectroscopy (THz-TDS). Results show that a number of characteristic absorption peaks with different intensities appear at 1.59–2.13 THz when the temperature is 298 K, while the absorption spectra change with the increase of temperature of the explosive sample; a new characteristic absorption peak located at 1.12 THz appears at 384 K, and its absorption peak intensity gradually increases, but disappears when the temperature drops to 298 K. The absorption spectra of FOX-7 molecular crystal at 298 and 393 K within the 0.2–2.5 THz region based on density functional theory (DFT) are also simulated by using Materials Studio 6.0 software in this article, and the simulated results agree well with the experimental data. In addition, the vibrational modes of the characteristic peaks of two kinds of crystalline in the experimental absorption spectra are analyzed and identified, showing that the formation of the characteristic absorption peaks is closely related to the molecular vibration, and the molecular structure may change under the influence of temperature, and the tautomeric polymorphism of the crystalline has different vibrational modes. This article indicates that the process of phase transformation of FOX-7 starts from 384 K, and this process is reversible; the characteristic absorption peak at 1.12 THz is composed of two kinds of vibrations (the swinging and torsional vibrations of the nitro and amido groups).
    • 基金项目: 中国工程物理研究院太赫兹科学技术中心(批准号: T2014-005-0103)和国防技术基础项目(批准号: Z202013T001)资助的课题.
    • Funds: Project supported by the Terahertz Research Center, CAEP (Grant No. T2014-005-0103), and the National Defense Foundation of China (Grant No. Z202013T001).
    [1]

    Latypov N V, Bergman J, Langlet A, Wellmar U, Bemm U 1998 Tetrahedron 54 11525

    [2]

    Huang B, Qiao Z Q, Nie F D, Cao M H, Su J, Huang H, Hu C W 2010 J. Hazard Mater. 184 561

    [3]

    Xu K Z, Song J R, Zhao F Q, Ma H X, Gao H X, Chang C R, Ren Y H, Hu R Z 2008 J. Hazard Mater. 158 333

    [4]

    Anniyappan M, Talawar M B, Gore G M, Venuqopalan S, Gandhe B R 2006 J. Hazard Mater. 137 812

    [5]

    Ren X L, Zuo X G, Xu K Z, Ren Y H, Huang J, Song J R, Wang B Z, Zhao F Q 2011 B Korean Chem. Sol. 32 2267

    [6]

    Kempa P B, Herrmann M 2005 Part. Part. Syst. Char. 22 418

    [7]

    Pellizzeri S, Korter T M, Zubieta J 2011 J. Mol. Struct. 1003 21

    [8]

    Qiao W, Stephan D, Hasselbeck M, Liang Q, Dekorsy T 2012 Opt. Express 20 19769

    [9]

    Oppenheim K C, Korter T M, Melinger J S, Grischkowsky D 2010 J. Phys. Chem. A 114 12513

    [10]

    Delaney S P, Witko E M, Simith T M, Korter T M 2012 J. Phys. Chem. A 116 8051

    [11]

    Delaney S P, Pan D, Galella M, Yin S X, Korter T M 2012 Cryst. Growth Des. 12 5017

    [12]

    Allis D G, Prokhorova D A, Korter T M 2006 J. Phys. Chem. A110 1951

    [13]

    Fitch M J, Leahy-Hoppa M R, Ott E W, Osiander R 2007 Chem. Phys. Lett. 443 284

    [14]

    Li R, Zeitler J A, Tomerini D, Parrott E P J, Gladden L F, Day G M A 2010 Phys. Chem. Chem. Phys. 12 5329

    [15]

    Ewelina M W, Timothy M K 2012 J. Phys. Chem. A 116 6879

    [16]

    Wang C L, Tian Z, Xiong Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 59 7857]

    [17]

    Pellizzeri S, Delaney S P, Korter T M, Zubieta J 2013 J. Mol. Struct. 1050 27

    [18]

    Allis D G, Zeitler J A, Taday P F, Korter T M 2008 Chem. Phys. Lett. 463 84

    [19]

    Huang L, Shabaev A, Lambrakos S G, Massa L 2013 Vib. Spectrosc. 64 62

    [20]

    Wu Q, Zhu W, Xiao H 2013 J. Mol. Model 19 4039

    [21]

    Wang W N, Li Y B, Yue W W 2007 Acta Phys. Sin. 56 0781 (in Chinese) [王卫宁, 李元波, 岳伟伟 2007 56 0781]

    [22]

    Wang W N 2009 Acta Phys. Sin. 58 7640 (in Chinese) [王卫宁 2009 58 7640]

    [23]

    Nickel D V, Delaney S P, Bian H T, Zheng J R, Korter T M, Mittleman D M 2014 J. Phys. Chem. A 118 2442

    [24]

    Dorney T D, Baraniuk R G, Mittleman D M 2001 J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 18 1562

    [25]

    Allen F H, Kennard O 1993 Chemical Design Automation News 8 1&31

  • [1]

    Latypov N V, Bergman J, Langlet A, Wellmar U, Bemm U 1998 Tetrahedron 54 11525

    [2]

    Huang B, Qiao Z Q, Nie F D, Cao M H, Su J, Huang H, Hu C W 2010 J. Hazard Mater. 184 561

    [3]

    Xu K Z, Song J R, Zhao F Q, Ma H X, Gao H X, Chang C R, Ren Y H, Hu R Z 2008 J. Hazard Mater. 158 333

    [4]

    Anniyappan M, Talawar M B, Gore G M, Venuqopalan S, Gandhe B R 2006 J. Hazard Mater. 137 812

    [5]

    Ren X L, Zuo X G, Xu K Z, Ren Y H, Huang J, Song J R, Wang B Z, Zhao F Q 2011 B Korean Chem. Sol. 32 2267

    [6]

    Kempa P B, Herrmann M 2005 Part. Part. Syst. Char. 22 418

    [7]

    Pellizzeri S, Korter T M, Zubieta J 2011 J. Mol. Struct. 1003 21

    [8]

    Qiao W, Stephan D, Hasselbeck M, Liang Q, Dekorsy T 2012 Opt. Express 20 19769

    [9]

    Oppenheim K C, Korter T M, Melinger J S, Grischkowsky D 2010 J. Phys. Chem. A 114 12513

    [10]

    Delaney S P, Witko E M, Simith T M, Korter T M 2012 J. Phys. Chem. A 116 8051

    [11]

    Delaney S P, Pan D, Galella M, Yin S X, Korter T M 2012 Cryst. Growth Des. 12 5017

    [12]

    Allis D G, Prokhorova D A, Korter T M 2006 J. Phys. Chem. A110 1951

    [13]

    Fitch M J, Leahy-Hoppa M R, Ott E W, Osiander R 2007 Chem. Phys. Lett. 443 284

    [14]

    Li R, Zeitler J A, Tomerini D, Parrott E P J, Gladden L F, Day G M A 2010 Phys. Chem. Chem. Phys. 12 5329

    [15]

    Ewelina M W, Timothy M K 2012 J. Phys. Chem. A 116 6879

    [16]

    Wang C L, Tian Z, Xiong Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 59 7857]

    [17]

    Pellizzeri S, Delaney S P, Korter T M, Zubieta J 2013 J. Mol. Struct. 1050 27

    [18]

    Allis D G, Zeitler J A, Taday P F, Korter T M 2008 Chem. Phys. Lett. 463 84

    [19]

    Huang L, Shabaev A, Lambrakos S G, Massa L 2013 Vib. Spectrosc. 64 62

    [20]

    Wu Q, Zhu W, Xiao H 2013 J. Mol. Model 19 4039

    [21]

    Wang W N, Li Y B, Yue W W 2007 Acta Phys. Sin. 56 0781 (in Chinese) [王卫宁, 李元波, 岳伟伟 2007 56 0781]

    [22]

    Wang W N 2009 Acta Phys. Sin. 58 7640 (in Chinese) [王卫宁 2009 58 7640]

    [23]

    Nickel D V, Delaney S P, Bian H T, Zheng J R, Korter T M, Mittleman D M 2014 J. Phys. Chem. A 118 2442

    [24]

    Dorney T D, Baraniuk R G, Mittleman D M 2001 J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 18 1562

    [25]

    Allen F H, Kennard O 1993 Chemical Design Automation News 8 1&31

  • [1] 李高芳, 殷文, 黄敬国, 崔昊杨, 叶焓静, 高艳卿, 黄志明, 褚君浩. 太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性.  , 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [2] 王志全, 施卫. 太赫兹时域光谱中脉冲太赫兹波全息探测.  , 2022, 71(18): 188704. doi: 10.7498/aps.71.20220983
    [3] 方雨青, 金钻明, 陈海洋, 阮舜逸, 李炬赓, 曹世勋, 彭滟, 马国宏, 朱亦鸣. 高通量制备的SmxPr1–xFeO3晶体中反铁磁自旋模式和晶体场跃迁的太赫兹光谱.  , 2020, 69(20): 209501. doi: 10.7498/aps.69.20200732
    [4] 任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高. Ho1–xYxFeO3单晶自旋重取向的掺杂效应与磁控效应的太赫兹光谱.  , 2020, 69(20): 207802. doi: 10.7498/aps.69.20201518
    [5] 姚宝殿, 胡桂青, 于治水, 张慧芬, 施立群, 沈皓, 王月霞. H,He对Ti3SiC2材料力学性能影响的第一性原理研究.  , 2016, 65(2): 026202. doi: 10.7498/aps.65.026202
    [6] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志. 基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究.  , 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [7] 张来斌, 任廷琦. 新型鸟嘌呤类似物y-鸟嘌呤及其异构体电子光谱性质的理论研究.  , 2015, 64(7): 077101. doi: 10.7498/aps.64.077101
    [8] 杜建宾, 武德起, 唐延林, 隆正文. 外场作用下邻苯二甲酸二丁酯的分子结构和光谱研究.  , 2015, 64(7): 073101. doi: 10.7498/aps.64.073101
    [9] 杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广. L-天冬酰胺及其一水合物的太赫兹光谱研究.  , 2014, 63(13): 133203. doi: 10.7498/aps.63.133203
    [10] 阮文, 谢安东, 余晓光, 伍冬兰. NaBn(n=19)团簇的几何结构和电子性质.  , 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [11] 杜建宾, 唐延林, 隆正文. 外电场作用下的五氯酚分子结构和电子光谱的研究.  , 2012, 61(15): 153101. doi: 10.7498/aps.61.153101
    [12] 黄平, 杨春. TiO2分子在GaN(0001)表面吸附的理论研究.  , 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [13] 陈宏善, 陈华君. H2在MgO团簇吸附的从头计算研究.  , 2011, 60(7): 073601. doi: 10.7498/aps.60.073601
    [14] 侯碧辉, 菅彦珍, 王雅丽, 张尔攀, 傅佩珍, 汪力, 钟任斌. PbB4O7 晶体的太赫兹光谱和软光学声子.  , 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [15] 陈宏善, 孟凡顺, 李向富, 张素玲. (TiO2)n(n=3—6)团簇吸附水分子的理论研究.  , 2009, 58(2): 887-892. doi: 10.7498/aps.58.887
    [16] 肖 冰, 冯 晶, 陈敬超, 严继康, 甘国友. 金红石型TiO2(110)表面性质及STM形貌模拟.  , 2008, 57(6): 3769-3774. doi: 10.7498/aps.57.3769
    [17] 马晓菁, 赵红卫, 代 斌, 刘桂锋. 次黄嘌呤及其核苷的THz光谱.  , 2008, 57(6): 3429-3434. doi: 10.7498/aps.57.3429
    [18] 陈 宣, 卢功利, 唐春梅, 邓开明, 谭伟石. M2Sn17(M=Ni,Mn)及其阴离子的几何结构、电子结构和磁性的计算研究.  , 2007, 56(9): 5216-5220. doi: 10.7498/aps.56.5216
    [19] 冯 晶, 肖 冰, 陈敬超. CuInSe2电子结构与光学性质的第一性原理计算.  , 2007, 56(10): 5990-5995. doi: 10.7498/aps.56.5990
    [20] 唐春梅, 袁勇波, 邓开明, 杨金龙. C72,La2@C72几何结构和电子性质的计算研究.  , 2006, 55(7): 3601-3605. doi: 10.7498/aps.55.3601
计量
  • 文章访问数:  6536
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-10
  • 修回日期:  2014-11-09
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map