-
采用磁控共溅射技术制备了铒铥共掺杂氧化锌发光薄膜. 通过优化退火温度, 实现了薄膜的近红外 平坦宽带发射, 总带宽可达到~ 500 nm, 覆盖了光通信S+C+L+U 区波段. 此发射带由Er3+ 的1535 nm (4I13/2 → 4I15/2) 发射峰及Tm3+ 的1460 nm (3H4 → 3F4), 1640 nm (1G4 → 3F2), 1740 nm (3F4 → 3H6) 发射峰组成. 研究表明: 退火温度低于800 ℃ 时, 没有观察到薄膜样品明显的光致发光现象; 随着退火温度 从800 ℃ 升高到1000 ℃, I1640/I1535 发射峰强度比从0.2 升高到0.3, I1740/I1535 发射峰强度比从0.5 降低 到0.4, 发射峰强度比均基本保持稳定; 当退火温度高于1000 ℃ 时, I1640/I1535 发射峰强度比从0.3 升高到 0.6, I1740/I1535 发射峰强度比从0.4 升高到0.8, 发射峰强度比均急剧增加. 变温行为表明: 随着温度从10 K 逐渐升高到300 K, 谱线的总带宽基本不变, 在340—360 nm 之间; Tm3+ 在1640 和1740 nm 处的发射峰强度 分别降低了2/3 和1/2, Er3+ 在1535 nm 的发射峰强度增大了1.2 倍. 这是因为随着温度的升高, 声子数目增 多, Er3+ 与Tm3+ 离子之间发生能量传递的概率不断变大, 并且在Tm3+ 离子之间没有发生交叉弛豫现象.Er-Tm codoped ZnO thin film is synthesized by co-sputtering from separated Er, Tm, and ZnO targets. A flat and broad emission band is achieved in a range of 1400-2100 nm by optimizing annealing temperature, and the observed 1460, 1540, 1640 and 1740 nm emission bands are attributed to the transitions of Tm3+: 3H4 →3F4, Er3+ 4I13/2 →4I15/2, Tm3+ 1G4 → 3F2 and Tm3+ 3F4 → 3H6 transitions, respectively, which cover S, C, L, U bands. The intensity ratios of 1640 to 1535 nm and 1740 to 1535 nm below 1000 ℃ are nearly constant, while the ratios increase sharply above 1000 ℃. The temperature dependence of photoluminescence (PL) spectrum is studied under 10-300 K. With increasing the operation temperature, the bandwidth of broadband is nearly invariable (340-360 nm), and the Tm3+ PL emission intensities of 1640 nm and 1740 nm from Er-Tm co-doped ZnO thin film decrease by a factor of 1.5 and 2, respectively. Moreover, the 1535 nm emission intensity is increased by a factor of 1.2. This phenomenon is attributed to the complicated energy transfer (ET) processes involving both Er3+ and Tm3+ and the increase of phonon-assisted ET rate with temperature as well. And the cross relaxation between Tm3+ ions does not occur.
[1] Zhao G Y, Tian Y, Wang X, Fan H Y, Hu L L 2013 J. Lumin. 134 837
[2] Wang Y Z, Yu D C, Lin H H, Ye S, Peng M Y, Zhang Q Y 2013 J. Appl. Phys. 114 203510
[3] Neuvonen P T, Sigvardt K, Johannsen S R, Chevallier J, Julsgaard B, Ram S K, Larsen A N 2014 Appl. Phys. Lett. 104 102106
[4] Ding W C, Liu Y, Zhang Y, Guo J C, Zuo Yu H, Cheng B W, Yu J Z, Wang Q M 2009 Chin. Phys. B 18 3044
[5] Duan S Q, Tan N, Zhang Q Y 2005 Chin. Phys. 14 0615
[6] Rivera V A G, El-Amraoui M, Ledemi Y, Messaddeq Y, Marega Jr E 2014 J. Lumin. 145 787
[7] Xiao Z S, Serna R, Afonso C N 2007 J. Appl. Phys. 101 033112
[8] Komukai T, Yamamoto T, Sugawa T, Miyajima Y 1995 IEEE J. Quantum Electron. 31 1880
[9] Pavani K, Moorthy L R, Kumar J S, Babu A M 2013 J. Lumin. 136 383
[10] Liu H Y, Zeng F, Lin Y L, Wang G Y, Pan F 2013 Appl. Phys. Lett. 102 181908
[11] Youn C J, Jeong T S, Han M S, Kim J H 2004 J. Cryst. Growth 261 526
[12] Li M Z, Lu F, Xu F, Jiang Z M, Wang X, Lou H N, Ma Z Q, Zheng L L 2012 Mater. Chem. Phys. 137 270
[13] Seo S Y, Kim K J, Shin J H 2010 Thin Solid Films 518 7012
[14] Pu Y, Xu F, Jiang Z M, Ma Z Q, Lu F, Chen D D 2012 Appl. Phys. Lett. 101 191903
[15] Xiao Z S, Zhou B, Xu F, Zhu F, Yan L, Zhang F, Huang A P 2009 Phys. Lett. A 373 890
[16] van den Hoven G N, Snoeks E, Polman A, van Uffelen J W M, Oei Y S, Smith M K 1993 Appl. Phys. Lett. 62 3065
[17] Xu F, Zheng L L, Li M Z, Lu F, Ma Z Q, Jiang Z M, Zhou P H, Shi J W, Pu Y 2012 Appl. Opt. 51 1115
[18] Liu Q L, Yu G H, Jiang Y 2009 Chin. Phys. B 18 1266
[19] Chun J 2009 Adv. OptoElectron. 2009 278105
[20] Wang X S, Nie Q H, Xu T F, Shen X, Dai S X, Gai N, Zhou Y 2009 Spectrochim. Acta A 72 543
[21] Richards B, Shen S X, Jha A, Tsang Y, Binks D 2007 Opt. Express 15 6546
[22] Lakshminarayana G, Yang R, Mao M F, Qiu J R 2009 Opt. Mater. 31 1506
[23] Xu F, Serna R, Jimenez de Castro M, Fernandez Navarro J M, Xiao Z 2010 Appl. Phys. B 99 263
[24] Miyakawa T, Dexter D L 1970 Phys. Rev. B 1 2961
-
[1] Zhao G Y, Tian Y, Wang X, Fan H Y, Hu L L 2013 J. Lumin. 134 837
[2] Wang Y Z, Yu D C, Lin H H, Ye S, Peng M Y, Zhang Q Y 2013 J. Appl. Phys. 114 203510
[3] Neuvonen P T, Sigvardt K, Johannsen S R, Chevallier J, Julsgaard B, Ram S K, Larsen A N 2014 Appl. Phys. Lett. 104 102106
[4] Ding W C, Liu Y, Zhang Y, Guo J C, Zuo Yu H, Cheng B W, Yu J Z, Wang Q M 2009 Chin. Phys. B 18 3044
[5] Duan S Q, Tan N, Zhang Q Y 2005 Chin. Phys. 14 0615
[6] Rivera V A G, El-Amraoui M, Ledemi Y, Messaddeq Y, Marega Jr E 2014 J. Lumin. 145 787
[7] Xiao Z S, Serna R, Afonso C N 2007 J. Appl. Phys. 101 033112
[8] Komukai T, Yamamoto T, Sugawa T, Miyajima Y 1995 IEEE J. Quantum Electron. 31 1880
[9] Pavani K, Moorthy L R, Kumar J S, Babu A M 2013 J. Lumin. 136 383
[10] Liu H Y, Zeng F, Lin Y L, Wang G Y, Pan F 2013 Appl. Phys. Lett. 102 181908
[11] Youn C J, Jeong T S, Han M S, Kim J H 2004 J. Cryst. Growth 261 526
[12] Li M Z, Lu F, Xu F, Jiang Z M, Wang X, Lou H N, Ma Z Q, Zheng L L 2012 Mater. Chem. Phys. 137 270
[13] Seo S Y, Kim K J, Shin J H 2010 Thin Solid Films 518 7012
[14] Pu Y, Xu F, Jiang Z M, Ma Z Q, Lu F, Chen D D 2012 Appl. Phys. Lett. 101 191903
[15] Xiao Z S, Zhou B, Xu F, Zhu F, Yan L, Zhang F, Huang A P 2009 Phys. Lett. A 373 890
[16] van den Hoven G N, Snoeks E, Polman A, van Uffelen J W M, Oei Y S, Smith M K 1993 Appl. Phys. Lett. 62 3065
[17] Xu F, Zheng L L, Li M Z, Lu F, Ma Z Q, Jiang Z M, Zhou P H, Shi J W, Pu Y 2012 Appl. Opt. 51 1115
[18] Liu Q L, Yu G H, Jiang Y 2009 Chin. Phys. B 18 1266
[19] Chun J 2009 Adv. OptoElectron. 2009 278105
[20] Wang X S, Nie Q H, Xu T F, Shen X, Dai S X, Gai N, Zhou Y 2009 Spectrochim. Acta A 72 543
[21] Richards B, Shen S X, Jha A, Tsang Y, Binks D 2007 Opt. Express 15 6546
[22] Lakshminarayana G, Yang R, Mao M F, Qiu J R 2009 Opt. Mater. 31 1506
[23] Xu F, Serna R, Jimenez de Castro M, Fernandez Navarro J M, Xiao Z 2010 Appl. Phys. B 99 263
[24] Miyakawa T, Dexter D L 1970 Phys. Rev. B 1 2961
计量
- 文章访问数: 6301
- PDF下载量: 544
- 被引次数: 0