-
采用化学共沉淀法制备了Eu3+掺杂摩尔分数不同、煅烧温度不同的SrWO4:Eu3+系列发光粉体, 所制备的粉体均具有Eu3+特征的强室温红光荧光发射. 通过调节煅烧温度和掺杂摩尔分数来调控近紫外和蓝光吸收强度, 进而调控用395 nm的近紫外光和465 nm的蓝光激发样品所得红光发光强度. 研究结果表明, 所制备的SrWO4:Eu3+红光荧光粉可以被紫外和蓝光发光二极管有效激
-
关键词:
- 稀土掺杂 /
- SrWO4:Eu3+ /
- 光致发光 /
- 白光发光二极管
The SrWO4:Eu3+ red phosphors with different Eu3+ doping concentrations and different sintering temperatures are prepared by the co-precipitation method. The powders as-prepared exhibit sharply red characteristic emissions of Eu3+ ions at room temperature. The near-ultraviolet and blue light absorption intensities are controlled by adjusting sintering temperature and doping concentration and so the red emission intensities under the 395 or 465 nm excitation can be adjusted. Our results show that the SrWO4:Eu3+ red phosphors can be effectively excited by the ultraviolet light, the near-ultraviolet (395 nm) light and 465 nm blue light. Therefore the SrWO4:Eu3+ red phosphors may have a potential application to white light-emitting diodes.-
Keywords:
- rare earth dopant /
- SrWO4:Eu3+ /
- photoluminescence /
- white light-emitting diode
[1] Reisfeld R, Zelner M, Patra A 2000 J. Alloys Compd. 300301 147
[2] Li J Q, Huang Z L 2008 J. Wuhan Inst. Techn. 30 76 ( in Chinese)[李剑秋、黄志良 2008 武汉工程大学学报 30 76]
[3] [4] [5] Fang Z L 2003 Acta Phys. Sin. 52 295 (in Chinese)[方志烈 2003 52 295]
[6] Wang Z J, Li P L, Wang Y, Yang Z P, Guo Q L 2009 Acta Phys. Sin. 58 1257 (in Chinese)[王志军、李盼来、王 颖、杨志平、郭庆林 2009 58 1257]
[7] [8] Neeraj S, Kijima N, Cheetham A K 2004 Chem. Phys. Lett. 387 2
[9] [10] [11] Wang Z J, Li P L, Yang Z P, Guo Q L, Li X 2010 Chin. Phys. B 19 017801
[12] Wang Z J, Yang Z P, Guo Q L, Li P L, Fu G S 2009 Chin. Phys. B 18 2068
[13] [14] [15] Li C W, Zhu Y X, Shen G D, Zhang Y H, Qi Y, Gao W, Jiang W J, Zhou D S 2010 Chin. Phys. B 19 097305
[16] Md M H, Hong I L, Dong K K 2009 J. Alloys Compd. 481 792
[17] [18] Tang H X, L S C 2011 Acta Phys. Sin. 60 643 (in Chinese)[唐红霞、吕树臣 2011 60 643]
[19] [20] [21] Wei X D, Cai L Y, Lu F C, Chen X L, Chen X Y, Liu Q L 2009 Chin. Phys. B 18 3555
[22] Zhang Y, Holzwarth N A W, Williams R T 1998 Phys. Rev. B 57 12738
[23] [24] Lou X M, Chen D H 2008 Mater. Lett. 62 1681
[25] [26] [27] Wang Z L, Liang H B, Zhou L Y, Wu H, Gong M L, Su Q 2005 Chem. Phys. Lett. 412 313
[28] Hu Y S, Zhuang W D, Ye H Q 2005 J. Alloys Compd. 390 226
[29] [30] [31] Lei F, Yan B 2008 J. Sol. State Chem. 181 2845
[32] [33] Su Y G, Li L P, Li G S 2008 Chem. Mater. 20 6060
[34] Zhou Y H, L S C 2010 Chin. J. Lumin. 31 378 (in Chinese)[周远航、吕树臣 2010 发光学报 31 378]
[35] -
[1] Reisfeld R, Zelner M, Patra A 2000 J. Alloys Compd. 300301 147
[2] Li J Q, Huang Z L 2008 J. Wuhan Inst. Techn. 30 76 ( in Chinese)[李剑秋、黄志良 2008 武汉工程大学学报 30 76]
[3] [4] [5] Fang Z L 2003 Acta Phys. Sin. 52 295 (in Chinese)[方志烈 2003 52 295]
[6] Wang Z J, Li P L, Wang Y, Yang Z P, Guo Q L 2009 Acta Phys. Sin. 58 1257 (in Chinese)[王志军、李盼来、王 颖、杨志平、郭庆林 2009 58 1257]
[7] [8] Neeraj S, Kijima N, Cheetham A K 2004 Chem. Phys. Lett. 387 2
[9] [10] [11] Wang Z J, Li P L, Yang Z P, Guo Q L, Li X 2010 Chin. Phys. B 19 017801
[12] Wang Z J, Yang Z P, Guo Q L, Li P L, Fu G S 2009 Chin. Phys. B 18 2068
[13] [14] [15] Li C W, Zhu Y X, Shen G D, Zhang Y H, Qi Y, Gao W, Jiang W J, Zhou D S 2010 Chin. Phys. B 19 097305
[16] Md M H, Hong I L, Dong K K 2009 J. Alloys Compd. 481 792
[17] [18] Tang H X, L S C 2011 Acta Phys. Sin. 60 643 (in Chinese)[唐红霞、吕树臣 2011 60 643]
[19] [20] [21] Wei X D, Cai L Y, Lu F C, Chen X L, Chen X Y, Liu Q L 2009 Chin. Phys. B 18 3555
[22] Zhang Y, Holzwarth N A W, Williams R T 1998 Phys. Rev. B 57 12738
[23] [24] Lou X M, Chen D H 2008 Mater. Lett. 62 1681
[25] [26] [27] Wang Z L, Liang H B, Zhou L Y, Wu H, Gong M L, Su Q 2005 Chem. Phys. Lett. 412 313
[28] Hu Y S, Zhuang W D, Ye H Q 2005 J. Alloys Compd. 390 226
[29] [30] [31] Lei F, Yan B 2008 J. Sol. State Chem. 181 2845
[32] [33] Su Y G, Li L P, Li G S 2008 Chem. Mater. 20 6060
[34] Zhou Y H, L S C 2010 Chin. J. Lumin. 31 378 (in Chinese)[周远航、吕树臣 2010 发光学报 31 378]
[35]
计量
- 文章访问数: 11301
- PDF下载量: 981
- 被引次数: 0