搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蠕虫状链模型在高分子物理研究中的应用

蒋滢 陈征宇

引用本文:
Citation:

蠕虫状链模型在高分子物理研究中的应用

蒋滢, 陈征宇

The applications of the wormlike chain model on polymer physics

Jiang Ying, Chen Jeff Z. Y.
PDF
导出引用
  • 蠕虫状链模型可以更好地描述非柔性高分子的空间链构象统计,因此被公认为是更加接近真实高分子的粗粒化高分子链模型。本文从蠕虫状链模型的物理特点出发,简单回顾了该模型在自洽场理论方法中的发展历程,着重从三个研究方向总结了近年来蠕虫状链模型在高分子物理研究中的应用:高分子液晶相结构及其转变的研究;几何表面对高分子体系的影响;蠕虫状嵌段共聚物自组装。最后,针对现有理论的发展现状,对未来基于该模型的场论模拟方法的发展方向提出了展望。
    The continuum version of the wormlike chain model (WLC), which was initially developed by Saito, Takahashi and Yunoki in 1967, is particularly suitable for description of polymer conformational properties affected by the chain rigidity. The WLC model is capable of covering an extensive range of chain rigidity, from the flexible chains to the rigid chains, by tuning the persistence length directly. It is widely accepted as a coarse-grained model that can be used to capture the physical properties, such as conformation and structures, of a larger class of real polymers than the Gaussian chain (GSC). Recently, the WLC model attracts increasing interests because of its advantages in studying a variety of polymeric systems, including liquid crystalline polymers and conjugated polymers. This review article focuses on applications of the WLC model, incorporated in the framework of self-consistent field theory, which is an effective method in theoretical exploration of phase separation in polymer systems. The article also pays particular attention to the developments of the numerical schemes to solve the modified diffusion equation governing the probability distribution of polymers. In addition, we summarize recent applications of the self-consistent field theories based on WLC model in the following three areas: phase transitions in liquid-crystalline polymers; the influence of surface curvature on polymeric systems involving the chain orientation effects; self-assembly of wormlike block copolymers. These studies are beyond the scope of self-consistent field theories based on a GSC model, which have been utilized in a large number of theoretical studies in recent years. Finally, we propose the perspectives of theoretical developments in field-theory simulations based on the WLC model for future work. In the polymer literature, it is generally appreciated that chain-rigidity is an important factor that influences the properties of structural stabilities on the meso-scale. The theoretical studies indentify the key physical mechanisms that play crucial roles in many experimental systems with attractively promising applications in practice, for systems such as liquid crystalline polymers and organic solar cell based on the conjugated polymers.
      通信作者: 蒋滢, jiangy.uwaterloo@gmail.com;jeffchen@uwaterloo.ca ; 陈征宇, jiangy.uwaterloo@gmail.com;jeffchen@uwaterloo.ca
    • 基金项目: 国家自然科学基金(批准号:21204067,21574006),中央高校基础科研业务费和 Natural Sciences and Engineering Research Council(Canada)资助的课题.
      Corresponding author: Jiang Ying, jiangy.uwaterloo@gmail.com;jeffchen@uwaterloo.ca ; Chen Jeff Z. Y., jiangy.uwaterloo@gmail.com;jeffchen@uwaterloo.ca
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21204067, 21574006), the Fundamental Research Funds for the Central Universities, China and Natural Sciences and Engineering Research Council (Canada).
    [1]

    Rubinstein M, Colby R H 2003 Polymer Physics (Oxford University Press)

    [2]

    Doi M, Edwards S F 1986 The Theory of Polymer Dynamics (Clarendon Press)

    [3]

    Yamakawa H 1997 Helical Wormlike Chains in Polymer Solutions (New York: Springer-Verlag)

    [4]

    de Gennes P G, Prost J 1993 The Physics of Liquid Crystals (New York: Oxford University Press)

    [5]

    Kratky O, Porod G 1949 Recl. Trav. Chim. 68 1106

    [6]

    Saito N, Takahashi K, Yunoki Y 1967 J. Phys. Soc. Jpn. 22 219

    [7]

    Tagamil Y 1969 Macromolecules 2 8

    [8]

    Harris R A, Hearst J E 1966 J. Chem. Phys. 44 2595

    [9]

    Freed K F 1972 Adv. Chem. Phys. 22 1

    [10]

    Fredrickson G H, 2006 The Equilibrium Theory of Inhomogeneous Polymer (Oxford: Clarendon Press)

    [11]

    Vroege G J, Odijk T 1988 Macromolecules 21 2848

    [12]

    Chen Z Y 1993 Macromolecules 26 3419

    [13]

    Chen J Z Y, Sullivan D E, Yuan X Q 2007 Macromolecules 40 1187

    [14]

    Morse D C, Fredrickson G H 1994 Phys. Rev. Lett. 73 3235

    [15]

    Schmid F, Mller M 1995 Macromolecules 28 863

    [16]

    Dchs D, Sullivan D E 2002 J. Phys.: Condens. Matter 14 12189

    [17]

    Ganesan V, Khounlavong L, Pryamitsyn V 2008 Phys. Rev. E 78 051804

    [18]

    Song W D, Tang P, Zhang H D, Yang Y L, Shi A C 2009 Macromolecules 42 6300

    [19]

    Gao J, Song W D, Tang P, Yang Y L 2011 Soft Matter 7 5208

    [20]

    Gao J, Tang P, Yang Y L. 2013 Soft Matter 9 69

    [21]

    Jiang Y, Chen J Z Y 2013 Phys. Rev. Lett. 110 138305

    [22]

    Jiang Y, Chen J Z Y 2013 Phys. Rev. E 88 042603

    [23]

    Cui S M, Akcakir O, Chen Z Y 1995 Phys. Rev. E 51 4548

    [24]

    Matsen M W 1996 J. Chem. Phys. 104 7758

    [25]

    Deng M G, Jiang Y, Liang H J, Chen J Z Y 2010 Macromolecules 43 3455

    [26]

    Jiang Y, Chen J Z Y 2010 Macromolecules 43 10668

    [27]

    Jiang Y, Zhang W Y, Chen J Z Y 2011 Phys. Rev. E 84 041803

    [28]

    Song W D, Tang P, Qiu F, Yang Y L, Shi A C 2011 Soft Matter 7 929

    [29]

    Liu A J, Fredrickson G H 1993 Macromolecules 26 2817

    [30]

    Drovetsky B Y, Liu A J, Mak C H 1999 J. Chem. Phys. 111 4334

    [31]

    Puech N, Grelet E, Poulin P, Blanc C, van der Schoot P 2010 Phys. Rev. E 82 020702

    [32]

    Yang G, Tang P, Yang Y 2012 Macromolecules 45 3590

    [33]

    Shah M, Pryamitsyn V, Ganesan V 2008 Macromolecules 41 218

    [34]

    Li S, Jiang Y, Chen J Z Y 2014 Soft Matter 10 8932

    [35]

    Netz R R, Andelman D 2003 Phys. Rep. 380 1

    [36]

    de Gennes P G 1969 Rep. Prog. Phys. 32 187

    [37]

    Semenov A N 2002 Eur. Phys. J. E 9 353

    [38]

    Deng M G, Jiang Y, Liang H J, Chen J Z Y 2010 J. Chem. Phys. 133 034902

    [39]

    Ivanov V A, Martemyanoova J A, Mller M, Paul W, Binder K 2009 J. Phys. Chem. B 113 3653

    [40]

    Netz R R, Joanny J F 1999 Macromolecules 32 9026

    [41]

    Chen Y L, Schweizer K S 2002 J. Chem. Phys. 117 1351

    [42]

    Cao D. P, Jiang T, Wu J. Z. 2006 J. Chem. Phys. 124 164904

    [43]

    Daoulas K, Therodorou D N, Harmandaris V A, Karayiannis N, Mavrantzas V G 2005 Macromolecules 38 7134

    [44]

    Lavrentovich O D 2014 Soft Matter 10 1264

    [45]

    Bonthuis D J, Meyer C, Stein D, Dekker C 2008 Phys. Rev. Lett. 101 108303

    [46]

    Kyubong J, Dhingra D M, Odijk T, de Pablo J J, Graham M D, Runnheim R, Forrest D, Schwartz D C 2007 Proc. Natl. Acad. Sci. U.S.A. 104 2673

    [47]

    Marenduzzo D, Orlandini E, Stasiak A, Sumner D W, Tubiana L, Micheletti C 2009 Proc. Natl. Acad. Sci. U.S.A. 106 22269

    [48]

    Reisner W, Pedersen J N, Austin R H 2012 Rep. Prog. Phys. 75 106601

    [49]

    de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)

    [50]

    Odijk T 1983 Macromolecules 16 1340

    [51]

    Burkhardt T W, Yang Y, Gompper G 2010 Phys. Rev. E 82 041801

    [52]

    Chen J Z Y, Sullivan D E 2006 Macromolecules 39 7769

    [53]

    Odijk T 2008 Phys. Rev. E 77 060901

    [54]

    Dai L, Ng S Y, Doyle P S, van der Maarel J 2012 ACS Macro Lett 1 1046

    [55]

    Wang Y, Tree D R, Dorfman K D 2011 Macromolecules 44 6594

    [56]

    Tree D R, Wang Y, Dorfman K D 2013 Phys. Rev. Lett. 110 208103

    [57]

    Dai L, van der Maarel J, Doyle P S 2014 Macromolecules 47 2445

    [58]

    Forrey C, Muthukumar M 2006 Biophys. J. 91 25

    [59]

    LaMarque J C, Le T L, Harvey S C 2004 Biopolymers 73 348

    [60]

    Fathizadeh A, Heidari M, Mossallam B E, Ejtehadi M R 2013 J. Chem. Phys. 139 044912

    [61]

    Petrov A S, Boz M B, Harvey S C 2007 J. Struct. Biol. 160 241

    [62]

    Ivanov V A, Rodionova A S, Martemyanova J A, Stukan M R, Mller M, Paul W, Binder K 2013 J. Chem. Phys. 138 234903

    [63]

    Liang Q, Li J F, Zhang P W, Chen J Z Y 2013 J. Chem. Phys. 138 244910

    [64]

    Chen J Z Y 2013 Macromolecules 46 9837

    [65]

    Gao J, Tang P, Yang Y L, Chen J Z Y 2014 Soft Matter 10 4674

    [66]

    Khanna V, Cochran E W, Hexemer A, Stein G E, Fredrickson G H, Kramer E J, Li X, Wang J, Hahn S F 2006 Macromolecules 39 9346

    [67]

    Yang G, Tang P, Yang Y L, Wang Q 2010 J. Phys. Chem. B 114 14897

    [68]

    Semenov A N, Vasilenko S V 1986 Sov. Phys. JETP 63 70

    [69]

    Semenov A N 1991 Molecular Crystals and Liquid Crystals 209 191

    [70]

    Williams D R M, Fredrickson G H 1992 Macromolecules 25 3561

    [71]

    Matsen M W, Barrett C 1998 J. Chem. Phys. 109 4108

    [72]

    Holyst R, Schick M 1992 J. Chem. Phys. 96 730

    [73]

    Singh C, Goulian M, Liu A. J, Fredrickson G H 1994 Macromolecules 27 2974

    [74]

    Reenders M, ten Brinke G 2002 Macromolecules 35 3266

    [75]

    Pryamitsyn V, Ganesan V 2004 J. Chem. Phys. 120 5824

    [76]

    Chen J Z, Zhang C X, Sun Z Y, Zheng Y S, An L J 2006 J. Chem. Phys. 124 104907

    [77]

    Kriksin Y A, Khalatur P G 2012 Macromolecular Theory and Simulations 21 382

    [78]

    Zhang X H, Jiang Y, Miao B, Chen Y L, Yan D D, Chen J Z Y 2014 Soft Matter 10 5405

    [79]

    Leibler L 1980 Macromolecules 13 1602

    [80]

    Jiang Y, Zhang X H, Miao B, Yan D D, Chen J Z Y 2016 Soft Matter 12 2481

  • [1]

    Rubinstein M, Colby R H 2003 Polymer Physics (Oxford University Press)

    [2]

    Doi M, Edwards S F 1986 The Theory of Polymer Dynamics (Clarendon Press)

    [3]

    Yamakawa H 1997 Helical Wormlike Chains in Polymer Solutions (New York: Springer-Verlag)

    [4]

    de Gennes P G, Prost J 1993 The Physics of Liquid Crystals (New York: Oxford University Press)

    [5]

    Kratky O, Porod G 1949 Recl. Trav. Chim. 68 1106

    [6]

    Saito N, Takahashi K, Yunoki Y 1967 J. Phys. Soc. Jpn. 22 219

    [7]

    Tagamil Y 1969 Macromolecules 2 8

    [8]

    Harris R A, Hearst J E 1966 J. Chem. Phys. 44 2595

    [9]

    Freed K F 1972 Adv. Chem. Phys. 22 1

    [10]

    Fredrickson G H, 2006 The Equilibrium Theory of Inhomogeneous Polymer (Oxford: Clarendon Press)

    [11]

    Vroege G J, Odijk T 1988 Macromolecules 21 2848

    [12]

    Chen Z Y 1993 Macromolecules 26 3419

    [13]

    Chen J Z Y, Sullivan D E, Yuan X Q 2007 Macromolecules 40 1187

    [14]

    Morse D C, Fredrickson G H 1994 Phys. Rev. Lett. 73 3235

    [15]

    Schmid F, Mller M 1995 Macromolecules 28 863

    [16]

    Dchs D, Sullivan D E 2002 J. Phys.: Condens. Matter 14 12189

    [17]

    Ganesan V, Khounlavong L, Pryamitsyn V 2008 Phys. Rev. E 78 051804

    [18]

    Song W D, Tang P, Zhang H D, Yang Y L, Shi A C 2009 Macromolecules 42 6300

    [19]

    Gao J, Song W D, Tang P, Yang Y L 2011 Soft Matter 7 5208

    [20]

    Gao J, Tang P, Yang Y L. 2013 Soft Matter 9 69

    [21]

    Jiang Y, Chen J Z Y 2013 Phys. Rev. Lett. 110 138305

    [22]

    Jiang Y, Chen J Z Y 2013 Phys. Rev. E 88 042603

    [23]

    Cui S M, Akcakir O, Chen Z Y 1995 Phys. Rev. E 51 4548

    [24]

    Matsen M W 1996 J. Chem. Phys. 104 7758

    [25]

    Deng M G, Jiang Y, Liang H J, Chen J Z Y 2010 Macromolecules 43 3455

    [26]

    Jiang Y, Chen J Z Y 2010 Macromolecules 43 10668

    [27]

    Jiang Y, Zhang W Y, Chen J Z Y 2011 Phys. Rev. E 84 041803

    [28]

    Song W D, Tang P, Qiu F, Yang Y L, Shi A C 2011 Soft Matter 7 929

    [29]

    Liu A J, Fredrickson G H 1993 Macromolecules 26 2817

    [30]

    Drovetsky B Y, Liu A J, Mak C H 1999 J. Chem. Phys. 111 4334

    [31]

    Puech N, Grelet E, Poulin P, Blanc C, van der Schoot P 2010 Phys. Rev. E 82 020702

    [32]

    Yang G, Tang P, Yang Y 2012 Macromolecules 45 3590

    [33]

    Shah M, Pryamitsyn V, Ganesan V 2008 Macromolecules 41 218

    [34]

    Li S, Jiang Y, Chen J Z Y 2014 Soft Matter 10 8932

    [35]

    Netz R R, Andelman D 2003 Phys. Rep. 380 1

    [36]

    de Gennes P G 1969 Rep. Prog. Phys. 32 187

    [37]

    Semenov A N 2002 Eur. Phys. J. E 9 353

    [38]

    Deng M G, Jiang Y, Liang H J, Chen J Z Y 2010 J. Chem. Phys. 133 034902

    [39]

    Ivanov V A, Martemyanoova J A, Mller M, Paul W, Binder K 2009 J. Phys. Chem. B 113 3653

    [40]

    Netz R R, Joanny J F 1999 Macromolecules 32 9026

    [41]

    Chen Y L, Schweizer K S 2002 J. Chem. Phys. 117 1351

    [42]

    Cao D. P, Jiang T, Wu J. Z. 2006 J. Chem. Phys. 124 164904

    [43]

    Daoulas K, Therodorou D N, Harmandaris V A, Karayiannis N, Mavrantzas V G 2005 Macromolecules 38 7134

    [44]

    Lavrentovich O D 2014 Soft Matter 10 1264

    [45]

    Bonthuis D J, Meyer C, Stein D, Dekker C 2008 Phys. Rev. Lett. 101 108303

    [46]

    Kyubong J, Dhingra D M, Odijk T, de Pablo J J, Graham M D, Runnheim R, Forrest D, Schwartz D C 2007 Proc. Natl. Acad. Sci. U.S.A. 104 2673

    [47]

    Marenduzzo D, Orlandini E, Stasiak A, Sumner D W, Tubiana L, Micheletti C 2009 Proc. Natl. Acad. Sci. U.S.A. 106 22269

    [48]

    Reisner W, Pedersen J N, Austin R H 2012 Rep. Prog. Phys. 75 106601

    [49]

    de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)

    [50]

    Odijk T 1983 Macromolecules 16 1340

    [51]

    Burkhardt T W, Yang Y, Gompper G 2010 Phys. Rev. E 82 041801

    [52]

    Chen J Z Y, Sullivan D E 2006 Macromolecules 39 7769

    [53]

    Odijk T 2008 Phys. Rev. E 77 060901

    [54]

    Dai L, Ng S Y, Doyle P S, van der Maarel J 2012 ACS Macro Lett 1 1046

    [55]

    Wang Y, Tree D R, Dorfman K D 2011 Macromolecules 44 6594

    [56]

    Tree D R, Wang Y, Dorfman K D 2013 Phys. Rev. Lett. 110 208103

    [57]

    Dai L, van der Maarel J, Doyle P S 2014 Macromolecules 47 2445

    [58]

    Forrey C, Muthukumar M 2006 Biophys. J. 91 25

    [59]

    LaMarque J C, Le T L, Harvey S C 2004 Biopolymers 73 348

    [60]

    Fathizadeh A, Heidari M, Mossallam B E, Ejtehadi M R 2013 J. Chem. Phys. 139 044912

    [61]

    Petrov A S, Boz M B, Harvey S C 2007 J. Struct. Biol. 160 241

    [62]

    Ivanov V A, Rodionova A S, Martemyanova J A, Stukan M R, Mller M, Paul W, Binder K 2013 J. Chem. Phys. 138 234903

    [63]

    Liang Q, Li J F, Zhang P W, Chen J Z Y 2013 J. Chem. Phys. 138 244910

    [64]

    Chen J Z Y 2013 Macromolecules 46 9837

    [65]

    Gao J, Tang P, Yang Y L, Chen J Z Y 2014 Soft Matter 10 4674

    [66]

    Khanna V, Cochran E W, Hexemer A, Stein G E, Fredrickson G H, Kramer E J, Li X, Wang J, Hahn S F 2006 Macromolecules 39 9346

    [67]

    Yang G, Tang P, Yang Y L, Wang Q 2010 J. Phys. Chem. B 114 14897

    [68]

    Semenov A N, Vasilenko S V 1986 Sov. Phys. JETP 63 70

    [69]

    Semenov A N 1991 Molecular Crystals and Liquid Crystals 209 191

    [70]

    Williams D R M, Fredrickson G H 1992 Macromolecules 25 3561

    [71]

    Matsen M W, Barrett C 1998 J. Chem. Phys. 109 4108

    [72]

    Holyst R, Schick M 1992 J. Chem. Phys. 96 730

    [73]

    Singh C, Goulian M, Liu A. J, Fredrickson G H 1994 Macromolecules 27 2974

    [74]

    Reenders M, ten Brinke G 2002 Macromolecules 35 3266

    [75]

    Pryamitsyn V, Ganesan V 2004 J. Chem. Phys. 120 5824

    [76]

    Chen J Z, Zhang C X, Sun Z Y, Zheng Y S, An L J 2006 J. Chem. Phys. 124 104907

    [77]

    Kriksin Y A, Khalatur P G 2012 Macromolecular Theory and Simulations 21 382

    [78]

    Zhang X H, Jiang Y, Miao B, Chen Y L, Yan D D, Chen J Z Y 2014 Soft Matter 10 5405

    [79]

    Leibler L 1980 Macromolecules 13 1602

    [80]

    Jiang Y, Zhang X H, Miao B, Yan D D, Chen J Z Y 2016 Soft Matter 12 2481

  • [1] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离.  , 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [2] 王晶, 焦阳, 田文得, 陈康. 低惯性与高惯性活性粒子混合体系中的相分离现象.  , 2023, 72(19): 190501. doi: 10.7498/aps.72.20230792
    [3] 刘博阳, 宋文涛, 刘争晖, 孙晓娟, 王开明, 王亚坤, 张春玉, 陈科蓓, 徐耿钊, 徐科, 黎大兵. AlGaN表面相分离的同位微区荧光光谱和高空间分辨表面电势表征.  , 2020, 69(12): 127302. doi: 10.7498/aps.69.20200099
    [4] 梁燚然, 梁清. 带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟.  , 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [5] 段华, 李剑锋, 张红东. 二维情况下两组分带电囊泡形变耦合相分离的理论模拟研究.  , 2018, 67(3): 038701. doi: 10.7498/aps.67.20171740
    [6] 纪丹丹, 张劭光. 三区域膜泡相分离模式之间转变的研究.  , 2018, 67(18): 188701. doi: 10.7498/aps.67.20180828
    [7] 向俊尤, 王志国, 徐宝, 孙运斌, 吴鸿业, 赵建军, 鲁毅. 双层钙钛矿(La1-xGdx)4/3Sr5/3Mn2O7(x=0,0.05)的相分离.  , 2014, 63(15): 157501. doi: 10.7498/aps.63.157501
    [8] 樊娟娟, 于秀玲, 梁雪梅. AB/CD嵌段共聚物共混体系多尺度结构的自洽场模拟.  , 2013, 62(15): 158105. doi: 10.7498/aps.62.158105
    [9] 任群, 王楠, 张莉, 王建元, 郑亚萍, 姚文静. 调幅分解及形核对相分离作用机理研究.  , 2012, 61(19): 196401. doi: 10.7498/aps.61.196401
    [10] 王强. Bi0.5Ca0.5Mn1-xCoxO3体系中的电荷有序和相分离.  , 2010, 59(9): 6569-6574. doi: 10.7498/aps.59.6569
    [11] 李美丽, 付兴烨, 孙宏宁, 赵洪安, 李丛, 段永平, 闫元, 孙民华. 高压作用下相分离液体玻璃转变的分子动力学研究.  , 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [12] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究.  , 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [13] 刘 锐, 李寅阊, 厚美瑛. 三维颗粒气体相分离现象.  , 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [14] 李 明, 诸跃进. 嵌段共聚物受限于软孔内的自组装.  , 2008, 57(12): 7555-7564. doi: 10.7498/aps.57.7555
    [15] 翟 薇, 王 楠, 魏炳波. 偏晶溶液相分离过程的实时观测研究.  , 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [16] 蒋中英, 郁伟中, 黄彦君, 夏元复, 马淑新. SMMA/SMA共聚物共混物的自由体积的热动态特性与相分离行为的PALS研究.  , 2006, 55(6): 3136-3140. doi: 10.7498/aps.55.3136
    [17] 蒋中英, 郁伟中, 夏元复. 三嵌段共聚物SEBS中自由体积行为的温度及e+辐照时间依赖性的研究.  , 2005, 54(7): 3434-3438. doi: 10.7498/aps.54.3434
    [18] 张华力, 刘 卫, 李栋才, 吴修胜, 陈初升. La2NiO4+δ体系相分离现象的低频内耗研究.  , 2004, 53(11): 3834-3838. doi: 10.7498/aps.53.3834
    [19] 冯文强, 诸跃进. 外噪声场对二元混合物相分离的驱动作用.  , 2004, 53(11): 3690-3694. doi: 10.7498/aps.53.3690
    [20] 张斌, 刘言军, 徐克舒, 贾 瑜. 全息聚合物弥散液晶材料衍射特性的优化.  , 2003, 52(1): 91-95. doi: 10.7498/aps.52.91
计量
  • 文章访问数:  8671
  • PDF下载量:  460
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-03
  • 修回日期:  2016-07-08
  • 刊出日期:  2016-09-05

/

返回文章
返回
Baidu
map