搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于辅助电介质层的棱镜表面等离子体共振效应研究

张倩昀 曾捷 李继峰 周雅斌 张先辉 曹海东

引用本文:
Citation:

基于辅助电介质层的棱镜表面等离子体共振效应研究

张倩昀, 曾捷, 李继峰, 周雅斌, 张先辉, 曹海东

Study of prism surface plasmon resonance effect based on dielectric-aided layer

Zhang Qian-Yun, Zeng Jie, Li Ji-Feng, Zhou Ya-Bin, Zhang Xian-Hui, Cao Hai-Dong
PDF
导出引用
  • 研究了一种基于棱镜基底-辅助电介质层-金膜-待测介质四层结构的表面等离子体共振(surface plasmon resonance,SPR)效应激励模型. 采用薄膜光学与波导理论,探索了由辅助电介质层与金膜复合而成共振薄膜对SPR效应的激励机理与调制特性. 借助时域有限差分方法,数值模拟得到辅助电介质层属性与共振能量传输特性关系. 在此基础上,构建了波长调制型棱镜辅助电介质层结构SPR激励系统. 研究结果表明,当待测介质折射率相同时,相较基于棱镜基底-金膜-待测介质三层结构的Kretschmann激励模型,辅助电介质层激励模型共振光谱整体向长波方向偏移且半波宽度出现显著展宽效应. 而当待测介质折射率增大时,辅助电介质层型激励模型的共振光谱不仅会向长波方向偏移,而且折射率响应灵敏度比棱镜Kretschmann三层激励模型高出75%. 因此该模型能够为诸如高灵敏度检测、新型光学滤波与调制器件设计等领域的研究应用提供理论与实践储备.
    A prism surface plasmon resonance (SPR) incentive model based on the dielectric-aided layer structure is studied. The model consists of four structure layers: prism-dielectric-aided layer-gold-environmental media. According to the thin film optics and waveguide theory, the excited mechanism and modulation characteristic of SPR effect are explored based on resonance composite film composed of dielectric-aided layer and gold film. Numerical simulation is conducted on the relation of layer thickness, film dispersion characteristics and resonance energy transfer by the finite difference time domain method. Thereby, the wavelength modulation prism dielectric-aided layer SPR excitation system is also developed. Results show that with the same refractive index of liquid, the SPR resonance spectrum of dielectric-aided layer incentive model shifts to the longer wavelength region and the resonant halfwave width is wider than the spectrum of common Kretschmann incentive model based on prism-gold-environmental media. With increasing refractive index, the SPR resonance spectrum redshifts, and its sensitity is 75% higher than the common incentive model. The designed model can effectively improve the sensitivity of the prism surface plasmon resonance effect, and in the areas such as high sensitivity detection, new types of optical filter, the modulator and other fields the SPR technology may provide a theoretical and practical basis.
    • 基金项目: 国家自然科学基金(批准号:51275239)、国家自然科学基金国际合作与交流项目(批准号:51161120326)、航空科学基金(批准号:20125652055)、高等学校博士学科点专项科研基金(批准号:2012321811003)和江苏高校优势学科建设工程资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51275239), the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 51161120326), the Aviation Science Foundation of China (Grant No. 20125652055), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2012321811003), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
    [1]

    Zhao H J 2012 Chin. Phys. B 21 087104

    [2]

    Andreas N 2010 J. Biol. Pharm. Anal. 51 252

    [3]

    Xu X, Ye Z Z, Wu J, Ying Y B 2010 Chinese J. Anal. Chem. 38 1052

    [4]

    Pernites R, Ponnapati R, Felipe M J, Advincula R 2011 Biosens Bioelectron. 26 2766

    [5]

    Jia Z X, Duan X, Lv T T, Guo Y N, Xue W R 2011 Acta Phys. Sin. 60 057301 (in Chinese) [贾智鑫, 段欣, 吕婷婷, 郭亚楠, 薛文瑞 2011 60 057301]

    [6]

    Hong X, Guo X B, Fang X, Li K, Ye H 2013 Acta Phys. Sin. 62 178502 (in Chinese) [洪霞, 郭雄彬, 方旭, 李衎, 叶辉 2013 62 178502]

    [7]

    Hong X G, Xu W D, Li X G, Zhao C Q, Tang X D 2008 Acta Phys. Sin. 57 6643 (in Chinese) [洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东 2008 57 6643]

    [8]

    Sarid D 1981 Phys. Rev. Lett. 47 1927

    [9]

    Quail J C, Rako J G, Simon H J 1983 Opt. Lett. 8 377

    [10]

    Li M Y 2010 MS Thesis (Beijing: Beijing Jiaotong University) (in Chinese) [李敏钰 2010 硕士学位论文 (北京: 北京交通大学)]

    [11]

    Wu L, Chu H S, Koh W S, Li E P 2010 Opt. Exp. 18 14395

    [12]

    Regatos D, Sepúlveda B, Fariña D, Carrascosa L G, Lechuga L M 2011 Opt. Exp. 19 8336

    [13]

    Kretschmann E, Raether H 1968 Z. Naturforsch. A 23 2135

    [14]

    Wijaya E, Lenaerts C, Maricot S, Hastanin J, Habraken S, Vilcot J P, Boukherroub R, Szunerits S 2011 Curr. Opin. Solid State Mater. Sci. 15 208

    [15]

    Maier S A 2007 Plasmonics: fundamentals and applications (Vol.1) (New York: Springer) p44–46

    [16]

    Zhang J T, Gu Z T, Deng C L 2010 Acta Phot. Sin. 39 1216 (in Chinese) [张江涛, 顾铮先, 邓传鲁 2010 光子学报 39 1216]

    [17]

    Li Q B, Wu R X, Yan Y, Sun H L 2013 Chin. Phys. Lett. 30 074208

    [18]

    Shalabney A, Abdulhalim I 2010 Sens. Actuators A: Phys. 159 24

    [19]

    Jiang Y Y, Shi H Y, Zhang Y Q, Hou C F, Sun X D 2007 Chin. Phys. 16 1959

    [20]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Reports 408 131

  • [1]

    Zhao H J 2012 Chin. Phys. B 21 087104

    [2]

    Andreas N 2010 J. Biol. Pharm. Anal. 51 252

    [3]

    Xu X, Ye Z Z, Wu J, Ying Y B 2010 Chinese J. Anal. Chem. 38 1052

    [4]

    Pernites R, Ponnapati R, Felipe M J, Advincula R 2011 Biosens Bioelectron. 26 2766

    [5]

    Jia Z X, Duan X, Lv T T, Guo Y N, Xue W R 2011 Acta Phys. Sin. 60 057301 (in Chinese) [贾智鑫, 段欣, 吕婷婷, 郭亚楠, 薛文瑞 2011 60 057301]

    [6]

    Hong X, Guo X B, Fang X, Li K, Ye H 2013 Acta Phys. Sin. 62 178502 (in Chinese) [洪霞, 郭雄彬, 方旭, 李衎, 叶辉 2013 62 178502]

    [7]

    Hong X G, Xu W D, Li X G, Zhao C Q, Tang X D 2008 Acta Phys. Sin. 57 6643 (in Chinese) [洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东 2008 57 6643]

    [8]

    Sarid D 1981 Phys. Rev. Lett. 47 1927

    [9]

    Quail J C, Rako J G, Simon H J 1983 Opt. Lett. 8 377

    [10]

    Li M Y 2010 MS Thesis (Beijing: Beijing Jiaotong University) (in Chinese) [李敏钰 2010 硕士学位论文 (北京: 北京交通大学)]

    [11]

    Wu L, Chu H S, Koh W S, Li E P 2010 Opt. Exp. 18 14395

    [12]

    Regatos D, Sepúlveda B, Fariña D, Carrascosa L G, Lechuga L M 2011 Opt. Exp. 19 8336

    [13]

    Kretschmann E, Raether H 1968 Z. Naturforsch. A 23 2135

    [14]

    Wijaya E, Lenaerts C, Maricot S, Hastanin J, Habraken S, Vilcot J P, Boukherroub R, Szunerits S 2011 Curr. Opin. Solid State Mater. Sci. 15 208

    [15]

    Maier S A 2007 Plasmonics: fundamentals and applications (Vol.1) (New York: Springer) p44–46

    [16]

    Zhang J T, Gu Z T, Deng C L 2010 Acta Phot. Sin. 39 1216 (in Chinese) [张江涛, 顾铮先, 邓传鲁 2010 光子学报 39 1216]

    [17]

    Li Q B, Wu R X, Yan Y, Sun H L 2013 Chin. Phys. Lett. 30 074208

    [18]

    Shalabney A, Abdulhalim I 2010 Sens. Actuators A: Phys. 159 24

    [19]

    Jiang Y Y, Shi H Y, Zhang Y Q, Hou C F, Sun X D 2007 Chin. Phys. 16 1959

    [20]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Reports 408 131

  • [1] 张翔宇, 刘会刚, 康明, 刘波, 刘海涛. 金属-介质-金属多层结构可调谐Fabry-Perot共振及高灵敏折射率传感.  , 2021, 70(14): 140702. doi: 10.7498/aps.70.20202058
    [2] 祁云平, 张婷, 郭嘉, 张宝和, 王向贤. 基于乙醇密封共振腔金属-介质-金属波导的高性能温度和折射率两用传感器.  , 2020, 69(16): 167301. doi: 10.7498/aps.69.20200405
    [3] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法.  , 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [4] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器.  , 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [5] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型.  , 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [6] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究.  , 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [7] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究.  , 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [8] 苏妍妍, 龚伯仪, 赵晓鹏. 基于双负介质结构单元的零折射率超材料.  , 2012, 61(8): 084102. doi: 10.7498/aps.61.084102
    [9] 王锐, 王玉山. Delta-P1近似漫反射光学模型的二阶参量灵敏度.  , 2012, 61(18): 184202. doi: 10.7498/aps.61.184202
    [10] 杨健戈, 孙成林, 杨永波, 高淑琴, 姜永恒, 里佐威. 改变溶液折射率方法研究Fermi共振.  , 2012, 61(3): 037802. doi: 10.7498/aps.61.037802
    [11] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析.  , 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [12] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析.  , 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [13] 高喜存, 胡 巍, 张 涛, 郭 旗, 王新爱, 龙学文. 利用Z扫描技术确定非局域非线性介质的非线性折射率.  , 2007, 56(4): 2237-2242. doi: 10.7498/aps.56.2237
    [14] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究.  , 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [15] 赵天恩, 伍瑞新, 杨 帆, 陈 平. 周期性层状铁氧体-电介质复合材料中导模模式的有效负折射率.  , 2006, 55(1): 179-183. doi: 10.7498/aps.55.179
    [16] 邵 杰, 高晓明, 袁怿谦, 杨 颙, 曹振松, 裴世鑫, 张为俊. 信号处理改善波长调制光谱灵敏度的实验研究.  , 2005, 54(10): 4638-4642. doi: 10.7498/aps.54.4638
    [17] 李鲠颖. 固态磁共振中提高四极核检测灵敏度的有效方法.  , 1994, 43(8): 1365-1370. doi: 10.7498/aps.43.1365
    [18] 戴松涛, 张光寅, 张存洲. 一个普适的反射光谱灵敏度公式及其应用.  , 1994, 43(9): 1393-1403. doi: 10.7498/aps.43.1393
    [19] 潘少华. 关于腔内光谱机理和灵敏度的分析.  , 1981, 30(9): 1270-1274. doi: 10.7498/aps.30.1270
    [20] 吴存恺, 范俊颖. 在钕玻璃中双光子共振吸收引起的非线性折射率.  , 1979, 28(5): 150-152. doi: 10.7498/aps.28.150
计量
  • 文章访问数:  6172
  • PDF下载量:  746
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-26
  • 修回日期:  2013-09-26
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map