-
利用碰撞参数玻恩近似方法研究了Debye 等离子体环境中高能H++H的碰撞激发过程, 研究了不同Debye 半径下氢原子1s → 2p 的激发耦合相互作用矩阵元、入射粒子能量为160 keV/u 的激发电子跃迁概率以及入射粒子能量范围为100–1000 keV/u 的碰撞激发截面. 结果表明: 随着屏蔽效应的增强, 激发截面减小. 根据激发截面的公式以及计算结果详细分析了引起激发截面减少的原因. 入射粒子与激发电子之间的屏蔽相互作用势和靶的电子结构(波函数和能级) 对激发截面都有很重要的影响.
-
关键词:
- 等离子体 /
- 碰撞参数玻恩近似方法 /
- 碰撞激发截面
The high-energy H++H impact excitation process in Debye plasma is investigated using impact parameter Born approximation method. In the cases of several different values of Debye length D, the inter-nuclear distance R of matrix elements, the weighted probability at a collision energy of 160 keV/u, and impact excitation cross sections in an energy range of 100–1000 keV/u for direct 1s → 2p transition in H for both the unscreened and screened Coulomb interactions are calculated. It is demonstrated that the magnitude of impact excitation cross section gradually reduces as screening parameter increases. According to the excitation cross section formula and the calculated results, a detailed analysis of the reason for the reduction caused by excitation cross section is given in this paper. The effects of screened Coulomb interaction on the potential of between incident particles and excited electronic and on the hydrogenatomic structure (wave function and energy level) have very important influence on the excitation cross section.[1] Salzman D 1998 Atomic Physics in Hot Plasmas (Oxford: Oxford University Press)
[2] Murillo M S, Weisheit J C 1998 Phys. Rep. 302 1
[3] Ning L N, Qi Y Y 2012 Chin. Phys. B 21 123201
[4] Scheibner K, Weisheit J C, Lane N F 1987 Phys. Rev. A 35 1252
[5] Zeng S L, Liu L, Wang J G, Janev R K 2008 J. Phys. B: At. Mol. Phys. 41 135202
[6] Zhang H, Wang J G, He B, Qiu Y B, Janev R K 2007 Phys. Plasmas 14 053505
[7] Liu L, Wang J G, Janev R K 2008 Phys. Rev. A 77 032709
[8] Zhang H, He B, Wang J G 2007 J. Atom. Mol. Phys. (Suppl.) 65 (in Chinese) [张弘, 何斌, 王建国 2007 原子与分子 (增刊) 65]
[9] Liu L, Wang J G, Janev R K 2007 J. Atom. Mol. Phys. (Suppl.) 61 (in Chinese) [刘玲, 王建国, Janev R K 2007 原子与分子 (增刊) 61]
[10] Ding D, He B, Liu L, Zhang C H, Wang J G 2009 Acta Phys. Sin. 58 8419 (in Chinese) [丁丁, 何斌, 刘玲, 张程华, 王建国 2009 58 8419]
[11] Qi Y Y, Wu Y, Wang J G, Qu Y Z 2009 Phys. Plasmas 16 023502
[12] Mandal C R, Mandal M, Mukherjee S C 1990 Phys. Rev. A 42 1787
[13] Detleffsen D, Anton M, Werner A, Schartner K H 1994 J. Phys. B: At. Mol. Phys. 41 4195
[14] Mcdowell M R C, Coleman J P 1970 Introduction to the Theory of Ion-Atom Collisions (London: North-Holland)
[15] Zhang S B 2011 Ph. D. Dissertation (Heifei: University of Science and Technology of China) (in Chinese) [张松斌 2011 博士学位论文 (合肥: 中国科技大学)]
[16] Arfken G B, Weber H J 2005 Mathematical Methods for Physics (San Diego: Elsevier Academic Press)
[17] Qi Y Y, Wang J G, Janev R K 2008 Phys. Rev. A 78 062511
-
[1] Salzman D 1998 Atomic Physics in Hot Plasmas (Oxford: Oxford University Press)
[2] Murillo M S, Weisheit J C 1998 Phys. Rep. 302 1
[3] Ning L N, Qi Y Y 2012 Chin. Phys. B 21 123201
[4] Scheibner K, Weisheit J C, Lane N F 1987 Phys. Rev. A 35 1252
[5] Zeng S L, Liu L, Wang J G, Janev R K 2008 J. Phys. B: At. Mol. Phys. 41 135202
[6] Zhang H, Wang J G, He B, Qiu Y B, Janev R K 2007 Phys. Plasmas 14 053505
[7] Liu L, Wang J G, Janev R K 2008 Phys. Rev. A 77 032709
[8] Zhang H, He B, Wang J G 2007 J. Atom. Mol. Phys. (Suppl.) 65 (in Chinese) [张弘, 何斌, 王建国 2007 原子与分子 (增刊) 65]
[9] Liu L, Wang J G, Janev R K 2007 J. Atom. Mol. Phys. (Suppl.) 61 (in Chinese) [刘玲, 王建国, Janev R K 2007 原子与分子 (增刊) 61]
[10] Ding D, He B, Liu L, Zhang C H, Wang J G 2009 Acta Phys. Sin. 58 8419 (in Chinese) [丁丁, 何斌, 刘玲, 张程华, 王建国 2009 58 8419]
[11] Qi Y Y, Wu Y, Wang J G, Qu Y Z 2009 Phys. Plasmas 16 023502
[12] Mandal C R, Mandal M, Mukherjee S C 1990 Phys. Rev. A 42 1787
[13] Detleffsen D, Anton M, Werner A, Schartner K H 1994 J. Phys. B: At. Mol. Phys. 41 4195
[14] Mcdowell M R C, Coleman J P 1970 Introduction to the Theory of Ion-Atom Collisions (London: North-Holland)
[15] Zhang S B 2011 Ph. D. Dissertation (Heifei: University of Science and Technology of China) (in Chinese) [张松斌 2011 博士学位论文 (合肥: 中国科技大学)]
[16] Arfken G B, Weber H J 2005 Mathematical Methods for Physics (San Diego: Elsevier Academic Press)
[17] Qi Y Y, Wang J G, Janev R K 2008 Phys. Rev. A 78 062511
计量
- 文章访问数: 6172
- PDF下载量: 306
- 被引次数: 0