-
光致电离等离子体在宇宙中广泛存在于强辐射场附近. 近年来随着高能量密度实验装置的发展, 在实验室内也能构造出光致电离等离子体. RCF是一个基于The Flexible Atomic Code 数据的针对光致电离等离子体的辐射碰撞模型, 该模型模拟了两个光致电离实验, 其 理论结果中电离态分布和光谱与测量值符合得很好. 在理论模拟中发现, 光致电离等离子体中光致激发和碰撞激发过程对离子态布居和发射光谱都有非常重要的影响. 光致激发过程可以通过将离子激发到双激发态从而间接电离离子; 碰撞激发过程会因为电子将基态离子激发到电离截面小的单激发态而抑制光子对等离子体的电离. 光致激发过程可以加强类锂离子的类氦离子的卫线, 而碰撞激发过程会影响类氦离子谱线的线强之比.Photoionized plasmas widely exist nearby strong radiative sources in the universe. With the development of the high energy density facilities, photoionized plasmas related to astrophysical objects are generated in laboratories accordingly. RCF (radiative collisional code based on the flexible atomic code) is a theoretical model applied to steady-state photoionized plasmas. Its rate equation includes five groups of mutually inverse atomic processes, which are spontaneous decay and photoexcitation, electron impact excitation and deexcitation, photoionization and radiative recombination, electron impact ionization and three body recombination, autoionization and dielectronic capture. All of the atomic data are calculated by FAC (the flexible atomic code), and with four input parameters, RCF can calculate the charge distribution and emission spectrum of the plasma. RCF has well simulated the charge state distribution of a photoionizing Fe experiment on Z-facility and the measured spectrum of photoionizing Si experiment on GEKKO-XII laser facility. According to the simulation results, the importance of photoexcitation and electron impact excitation processes in the two photoionization experiments is discussed. In the photoionizing Fe experiment condition, high energy photons not only ionize the ions by photoionization directly, but also excite the ions to autoionizing levels, ionizing the ions indirectly. What is more, far from ionizing the ions, electrons even suppress the ionization of the plasma by exciting the ions to levels with small ionization cross sections. In the photoionizing Si experiment condition, because of high photoexcitation rate, strong resonance line of He-like ion and some Li-like ion lines, which have similar spontaneous decay rates as the resonance line, are emitted. Although the intercombination line of He-like ion has lower spontaneous decay rate than the resonance lines, strong recombination makes them have comparable strengthes. Electron impact excitation can influence the line ratio of He-like ion lines by affecting the distribution of 1s2l (l=s,p) levels.
-
Keywords:
- plasma /
- photoionization /
- atomic processes /
- spectrum
[1] Fujioka S, Takabe H, Yamamoto N, Salzmann D, Wang F L, Nishimura H, Li Y T, Dong Q L, Wang S J, Zhang Y, Rhee Y J, Lee Y W, Han J M, Tanabe M, Fujiwara T, Nakabayashi Y, Zhao G, Zhang J, Mima K 2009 Nature Phys. 5 821
[2] Remington B A, Drake R P, Ryutov D D 2006 Rev. Morn. Phys. 78 755
[3] Foord M E, Heeter R F, van Hoof P A, Thoe R S, Bailey J E, Cuneo M E, Chung H K, Liedahl D A, Fournier K B, Chandler G A, Jonauskas V, Kisielius R, Mix L P, Ramsbottom C, Springer P T, Keenan F P, Rose S J, Goldstein W H 2004 Phys. Rev. Lett. 93 055002
[4] Foord M E, Heeter R F, Chung H K, van Hoof P A, Bailey J E, Cuneo M E, Liedahl D A, Fournier K B, Jonauskas V, Kisielius R, Ramsbottom C, Springer P T, Keenan F P, Rose S J, Goldstein W H 2006 J. Quant. Spec. Radiat. Transf. 99 712
[5] Rose S J 1998 J. Phys. B: Atomic Molecular Physics 31 2129
[6] Djaoui A, Rose S J 1992 J. Phys. B: Atomic Molecular Physics 25 2745
[7] Rose S J, van Hoof P A M, Jonauskas V, Keenan F P, Kisielius R, Ramsbottom C, Foord M E, Heeter R F, Springer P T 2004 J. Phys. B: Atomic Molecular Physics 37 L337
[8] Chung H K, Morgan W L, Lee R W 2003 J. Quant. Spec. Radiat. Transf. 81 107
[9] Salzmann D, Takabe H, Wang F L, Zhao G 2009 ApJ 742 52
[10] Wang F L, Salzmann D, Zhao G, Takabe H 2009 ApJ 742 53
[11] Ferland G J, Korista K T, Verner D A, Ferguson J W, Kingdon J B, Verner E M 1998 Publ. Astron. Soc. Pac. 110 761
[12] Kallman T R, Liedahl D, Osterheld A, Goldstein W, Kahn S 1996 ApJ, 465 994
[13] Kallman T, Bautista M 2001 ApJS 133 221
[14] Kallman T R, Palmeri P, Bautista M A, Mendoza C, Krolik J H 2004 ApJS 155 675
[15] Bautista M A, Kallman T R 2001 ApJS 134 139
[16] Boroson B, Vrtilek S D, Kallman T, Corcoran M 2003 ApJ 592 516
[17] Liang G Y, Li F, Wang F L, Wu Y, Zhong J Y, Zhao G 2014 ApJ 783 124
[18] Kallman T, Evans D A, Marshall H, Canizares C, Longinotti A, Nowak M, Schulz N 2014 ApJ 780 121
[19] Porquet D, Dubau J 2000 AAS 143, 495
[20] Han B, Wang F L, Salzmann D, Zhao G 2015 Publ. Astron. Soc. Japan 67 29
[21] Salzmann D 1998 Atomic Physics in Hot Plasmas (New York: Oxford University Press)
[22] Gu M F 2008 Can. J. Phys. 86 675
[23] Schulz N, Canizares C R, Lee J C, Sako M 2002 ApJ 564 L21
[24] Pradhan A K, Nahar S N 2011 Atomic Astrophysics and Spectroscopy (New York: Cambridge University Prtess)
[25] Wang F L, Salzmann D, Zhao G, Takabe H, Fujioka S, Yamamoto N, Nishimura H, Zhang J 2009 ApJ 706 592
[26] Bao L H, Wu Z Q, Duan B, Ding Y K, Yan J 2011 Phys. Plasmas 18 023301
-
[1] Fujioka S, Takabe H, Yamamoto N, Salzmann D, Wang F L, Nishimura H, Li Y T, Dong Q L, Wang S J, Zhang Y, Rhee Y J, Lee Y W, Han J M, Tanabe M, Fujiwara T, Nakabayashi Y, Zhao G, Zhang J, Mima K 2009 Nature Phys. 5 821
[2] Remington B A, Drake R P, Ryutov D D 2006 Rev. Morn. Phys. 78 755
[3] Foord M E, Heeter R F, van Hoof P A, Thoe R S, Bailey J E, Cuneo M E, Chung H K, Liedahl D A, Fournier K B, Chandler G A, Jonauskas V, Kisielius R, Mix L P, Ramsbottom C, Springer P T, Keenan F P, Rose S J, Goldstein W H 2004 Phys. Rev. Lett. 93 055002
[4] Foord M E, Heeter R F, Chung H K, van Hoof P A, Bailey J E, Cuneo M E, Liedahl D A, Fournier K B, Jonauskas V, Kisielius R, Ramsbottom C, Springer P T, Keenan F P, Rose S J, Goldstein W H 2006 J. Quant. Spec. Radiat. Transf. 99 712
[5] Rose S J 1998 J. Phys. B: Atomic Molecular Physics 31 2129
[6] Djaoui A, Rose S J 1992 J. Phys. B: Atomic Molecular Physics 25 2745
[7] Rose S J, van Hoof P A M, Jonauskas V, Keenan F P, Kisielius R, Ramsbottom C, Foord M E, Heeter R F, Springer P T 2004 J. Phys. B: Atomic Molecular Physics 37 L337
[8] Chung H K, Morgan W L, Lee R W 2003 J. Quant. Spec. Radiat. Transf. 81 107
[9] Salzmann D, Takabe H, Wang F L, Zhao G 2009 ApJ 742 52
[10] Wang F L, Salzmann D, Zhao G, Takabe H 2009 ApJ 742 53
[11] Ferland G J, Korista K T, Verner D A, Ferguson J W, Kingdon J B, Verner E M 1998 Publ. Astron. Soc. Pac. 110 761
[12] Kallman T R, Liedahl D, Osterheld A, Goldstein W, Kahn S 1996 ApJ, 465 994
[13] Kallman T, Bautista M 2001 ApJS 133 221
[14] Kallman T R, Palmeri P, Bautista M A, Mendoza C, Krolik J H 2004 ApJS 155 675
[15] Bautista M A, Kallman T R 2001 ApJS 134 139
[16] Boroson B, Vrtilek S D, Kallman T, Corcoran M 2003 ApJ 592 516
[17] Liang G Y, Li F, Wang F L, Wu Y, Zhong J Y, Zhao G 2014 ApJ 783 124
[18] Kallman T, Evans D A, Marshall H, Canizares C, Longinotti A, Nowak M, Schulz N 2014 ApJ 780 121
[19] Porquet D, Dubau J 2000 AAS 143, 495
[20] Han B, Wang F L, Salzmann D, Zhao G 2015 Publ. Astron. Soc. Japan 67 29
[21] Salzmann D 1998 Atomic Physics in Hot Plasmas (New York: Oxford University Press)
[22] Gu M F 2008 Can. J. Phys. 86 675
[23] Schulz N, Canizares C R, Lee J C, Sako M 2002 ApJ 564 L21
[24] Pradhan A K, Nahar S N 2011 Atomic Astrophysics and Spectroscopy (New York: Cambridge University Prtess)
[25] Wang F L, Salzmann D, Zhao G, Takabe H, Fujioka S, Yamamoto N, Nishimura H, Zhang J 2009 ApJ 706 592
[26] Bao L H, Wu Z Q, Duan B, Ding Y K, Yan J 2011 Phys. Plasmas 18 023301
计量
- 文章访问数: 7861
- PDF下载量: 220
- 被引次数: 0