搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空心Fe3O4纳米微球的制备及超顺磁性

李文宇 霍格 黄岩 董丽娟 卢学刚

引用本文:
Citation:

空心Fe3O4纳米微球的制备及超顺磁性

李文宇, 霍格, 黄岩, 董丽娟, 卢学刚

Synthesis and superparamagnetism of Fe3O4 hollow nano-microspheres

Li Wen-Yu, Huo Ge, Huang Yan, Dong Li-Juan, Lu Xue-Gang
PDF
导出引用
  • 采用水热控制合成法,以六水三氯化铁、柠檬酸三钠和尿素为原料,聚丙烯酰胺为稳定剂,200 ℃下反应12 h制备得到了超顺磁性空心Fe3O4纳米微球.通过X射线衍射仪、扫描电子显微镜、透射电子显微镜对样品的结构和形貌进行表征,并采用振动样品磁强计测试了样品的磁性能.结果表明:所得样品为具有尖晶石结构的Fe3O4纳米微球,尺寸为160 nm 左右,呈分等级结构,即整个微球由粒径约18 nm 的初级晶粒自组装堆叠而成;室温下表现为典型的超顺磁性,且饱和磁化强度为73.3 emu/g (1 emu/g=1 A m2/kg),这种高饱和磁化强度可以由其初级晶粒晶化程度高且粒径较大以及这种特殊的二次自组装结构进行解释.这种Fe3O4纳米微球为疏松多孔的空心球状结构,具有粒径分布均匀、分散性良好和超顺磁性的特点,在药物靶向输运和肿瘤热疗中有潜在的应用.
    Fe3O4 nanomaterials have received great attention due to their many applications in tumor diagnosis and tumor heat therapy based on their good biocompatibility, magnetic targeting ability and superparamagnetic properties to avoid magnetic reunion in the process of magnetic targeting. Most of superparamagnetic nanoparticles obtained by traditional methods exhibit lower saturation magnetization (MS), because of their small particle sizes. Enlarging the particle size is favorable to increase the MS of magnetic particles. However, the superparamagnetism of the particle could be lost with the increase of particle size. This is not favorable to the targeting delivery of magnetic particles. For this purpose, in this paper, novel Fe3O4 nano-microspheres with mesoporous hollow structure are successfully synthesized by a facile hydrothermal method from the FeCl36 H2O, sodium citrate, urea, and polyacrylamide as additive, the reaction temperature is 200℃ and reaction time is 12 h. The crystal structure and purity of the resulting products are examined by powder X-ray diffraction (XRD). The morphologies of the products are studied by using scanning electron microscopy (SEM) and transmission electron microscopic (TEM). The magnetic properties of Fe3O4 nano-microspheres are evaluated with a vibrating sample magnetometer. The morphology evolution process and possible formation mechanism of Fe3O4 nano-microspheres are investigated. The findings are as follows:all XRD peaks of the hollow Fe3O4 nano-microspheres could be assigned to the spinel-type Fe3O4. The SEM and TEM images reveal that the products are mesoporous hollow Fe3O4 nano-microspheres and possess hierarchical structure, in which large microspheres (160 nm) are self-assembled by smaller Fe3O4 initial crystals (18 nm). It is found that the synthetic time of Fe3O4 nano-microspheres is considerable for the formation of the Fe3O4 hierarchical structure, and that the dispersion and sphericity of Fe3O4 nano-microspheres are the best when reaction time is 12 h. The formation of hierarchical hollow structure is believed to be due to the Ostwald ripening process, in which the initial crystals redissolve and regrow. Furthermore, the magnetic measurement results show that as-prepared hollow Fe3O4 nano-microspheres exhibit typical superparamagnetic properties whose initial crystal size is in the range of superparamagnetic region. Meanwhile, MS is about 73.3 emu/g at room temperature, which is significantly greater than that of traditional small superparamagnetic nanoparticles and compact solid nano-microspheres. The high saturation magnetization of hollow Fe3O4 nano-microspheres originates from a high crystallinity with primary grain, lager size and hierarchical structure. The results indicate that the as-prepared Fe3O4 hollow nano-microspheres are dispersed, water-soluble, homogeneous in particle diameter, and superparamagnetic, and can be used in targeted anticancer drug delivery and tumor heat therapy.
      通信作者: 卢学刚, xglu@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51172178)资助的课题.
      Corresponding author: Lu Xue-Gang, xglu@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51172178).
    [1]

    Zhu M Y, Liu C, Bo W Q, Hu J W, Hu Y H, Jin H M, Wang S W, Li Y 2012 Acta Phys. Sin. 61 078106 (in Chinese)[朱明原, 刘聪, 薄伟强, 舒佳武, 胡业昊, 金红明, 王世伟, 李瑛 2012 61 078106]

    [2]

    Zheng X C, Li X Y, He L H, et al. 2017 Chin. Phys. B 26 037502

    [3]

    Gholizadeh A, Jafari E 2017 J. Magn. Magn. Mater. 422 328

    [4]

    Liu R, Yang S C, Wang F, et al. 2012 ACS Appl. Mater. Inter. 4 1537

    [5]

    Lu X G, Liu Q R, Huo G, et al 2012 Colloid Surf. A:Physicochem. Eng. Asp. 407 23

    [6]

    Li X Y, Si Z J, Lei Y Q, et al. 2011 Cryst. Eng. Comm. 13 642

    [7]

    Hao H Q, Ma Q M, He F, et al. 2014 J. Mater. Chem. B 2 7978

    [8]

    Ling Y, Tang X Z, Wang F J, et al. 2017 RSC Adv. 7 2913

    [9]

    Gu L, He X M, Wu Z Y 2014 Mater. Res. Bull. 59 65

    [10]

    Casula M F, Floris P, Innocenti C, et al. 2010 Chem. Mater. 22 1739

    [11]

    Shen L Z, Qiao Y S, Guo Y, et al. 2013 Optoelecyron. Adv. Mat. 7 525

    [12]

    Song L N, Zang F C, Song M J, et al. 2015 J. Nanosci. Nanotechno. 15 4111

    [13]

    Claire C, Philippe R, Jean M I, et al. 2006 Adv. Drug. Deliver. Rer. 58 1478

    [14]

    Alexion C, Amold W, Hulin P, et al. 2001 J. Magn. Magn. Mater. 225 187

    [15]

    Liu R T, Liu J, Tong J Q, et al. 2012 Prog. Nat. Sci. 22 31

    [16]

    Li Q 2010 Beijing Biomed. Eng. 29 308 (in Chinese)[李强 2010 北京生物医学工程 29 308]

    [17]

    Barakat N S 2009 Nanomedicine-UK 4 799

    [18]

    Frey N A, Peng S, Cheng K, et al. 2009 Chem. Soc. Rev. 38 2532

    [19]

    Qin R H, Jiang W, Liu H Y, et al. 2007 J. Funct. Mater. 6 902 (in Chinese)[秦润华, 姜炜, 刘宏英, 等 2007 功能材料 6 902]

    [20]

    Bo W, Song L, Li S H, et al. 2007 J. Chongqing Med. Univ. 32 922 (in Chinese)[柏玮, 宋琳, 李少林, 等 2007 重庆医科大学学报 32 922]

    [21]

    Zhang Y K, Luo C, Zhu C M 2011 J. Third Mil. Med. Univ. 33 1224 (in Chinese)[张玉坤, 罗聪, 朱朝敏 2011 第三军医大学学报 33 1224]

  • [1]

    Zhu M Y, Liu C, Bo W Q, Hu J W, Hu Y H, Jin H M, Wang S W, Li Y 2012 Acta Phys. Sin. 61 078106 (in Chinese)[朱明原, 刘聪, 薄伟强, 舒佳武, 胡业昊, 金红明, 王世伟, 李瑛 2012 61 078106]

    [2]

    Zheng X C, Li X Y, He L H, et al. 2017 Chin. Phys. B 26 037502

    [3]

    Gholizadeh A, Jafari E 2017 J. Magn. Magn. Mater. 422 328

    [4]

    Liu R, Yang S C, Wang F, et al. 2012 ACS Appl. Mater. Inter. 4 1537

    [5]

    Lu X G, Liu Q R, Huo G, et al 2012 Colloid Surf. A:Physicochem. Eng. Asp. 407 23

    [6]

    Li X Y, Si Z J, Lei Y Q, et al. 2011 Cryst. Eng. Comm. 13 642

    [7]

    Hao H Q, Ma Q M, He F, et al. 2014 J. Mater. Chem. B 2 7978

    [8]

    Ling Y, Tang X Z, Wang F J, et al. 2017 RSC Adv. 7 2913

    [9]

    Gu L, He X M, Wu Z Y 2014 Mater. Res. Bull. 59 65

    [10]

    Casula M F, Floris P, Innocenti C, et al. 2010 Chem. Mater. 22 1739

    [11]

    Shen L Z, Qiao Y S, Guo Y, et al. 2013 Optoelecyron. Adv. Mat. 7 525

    [12]

    Song L N, Zang F C, Song M J, et al. 2015 J. Nanosci. Nanotechno. 15 4111

    [13]

    Claire C, Philippe R, Jean M I, et al. 2006 Adv. Drug. Deliver. Rer. 58 1478

    [14]

    Alexion C, Amold W, Hulin P, et al. 2001 J. Magn. Magn. Mater. 225 187

    [15]

    Liu R T, Liu J, Tong J Q, et al. 2012 Prog. Nat. Sci. 22 31

    [16]

    Li Q 2010 Beijing Biomed. Eng. 29 308 (in Chinese)[李强 2010 北京生物医学工程 29 308]

    [17]

    Barakat N S 2009 Nanomedicine-UK 4 799

    [18]

    Frey N A, Peng S, Cheng K, et al. 2009 Chem. Soc. Rev. 38 2532

    [19]

    Qin R H, Jiang W, Liu H Y, et al. 2007 J. Funct. Mater. 6 902 (in Chinese)[秦润华, 姜炜, 刘宏英, 等 2007 功能材料 6 902]

    [20]

    Bo W, Song L, Li S H, et al. 2007 J. Chongqing Med. Univ. 32 922 (in Chinese)[柏玮, 宋琳, 李少林, 等 2007 重庆医科大学学报 32 922]

    [21]

    Zhang Y K, Luo C, Zhu C M 2011 J. Third Mil. Med. Univ. 33 1224 (in Chinese)[张玉坤, 罗聪, 朱朝敏 2011 第三军医大学学报 33 1224]

  • [1] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培. 水热法合成纳米花状二硫化钼及其微观结构表征.  , 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [2] 薄小庆, 刘唱白, 李海英, 刘丽, 郭欣, 刘震, 刘丽丽, 苏畅. 多孔ZnO微米球的制备及其优异的丙酮敏感特性.  , 2014, 63(17): 176803. doi: 10.7498/aps.63.176803
    [3] 胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋. 微流控技术制备ZnO纳米线阵列及其气敏特性.  , 2014, 63(20): 207102. doi: 10.7498/aps.63.207102
    [4] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性.  , 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [5] 汪冬冬, 高辉. 三维自组装Eu3+-石墨烯复合材料的制备及其磁性研究.  , 2013, 62(18): 188102. doi: 10.7498/aps.62.188102
    [6] 李屹同, 沈谅平, 王浩, 汪汉斌. 水基ZnO纳米流体电导和热导性能研究 .  , 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [7] 陈先梅, 王晓霞, 郜小勇, 赵显伟, 刘红涛, 张飒. 掺银氧化锌纳米棒的水热法制备研究.  , 2013, 62(5): 056104. doi: 10.7498/aps.62.056104
    [8] 陈先梅, 郜小勇, 张飒, 刘红涛. 醋酸锌热解温度对ZnO纳米棒的结构及光学性质的影响.  , 2013, 62(4): 049102. doi: 10.7498/aps.62.049102
    [9] 万步勇, 苑进社, 冯庆, 王奥. K,Na掺杂Cu-S纳米晶的水热合成及对结构、性能的影响.  , 2013, 62(17): 178102. doi: 10.7498/aps.62.178102
    [10] 王世伟, 朱明原, 钟民, 刘聪, 李瑛, 胡业旻, 金红明. 脉冲磁场对水热法制备Mn掺杂ZnO稀磁半导体的影响.  , 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [11] 李明阳, 于明朗, 苏庆, 刘雪芹, 谢二庆, 张晓倩. 生长在Si基底上VOX纳米管形貌的时间影响因子及其气敏性初探.  , 2012, 61(23): 236101. doi: 10.7498/aps.61.236101
    [12] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列.  , 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [13] 孙家跃, 曹纯, 杜海燕. NaLa(MoO4)2∶Eu3+的水热调控合成与发光特性研究.  , 2011, 60(12): 127801. doi: 10.7498/aps.60.127801
    [14] 潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德. Fe离子注入ZnO生成超顺磁纳米颗粒.  , 2011, 60(10): 108501. doi: 10.7498/aps.60.108501
    [15] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钪钇石型β-Mn2V2O7的水热合成、结构表征与反铁磁性.  , 2011, 60(7): 077504. doi: 10.7498/aps.60.077504
    [16] 黄金昭, 李世帅, 冯秀鹏. ZnO纳米棒的低温溶液法制备、光电特性研究及其在有机/无机复合电致发光中的应用.  , 2010, 59(8): 5839-5844. doi: 10.7498/aps.59.5839
    [17] 新梅, 曹望和. 水热法制备ZnS:Cu,Tm超细X射线发光粉.  , 2010, 59(8): 5833-5838. doi: 10.7498/aps.59.5833
    [18] 张爱平, 张进治. 水热法制备不同形貌和结构的BiVO4粉末.  , 2009, 58(4): 2336-2344. doi: 10.7498/aps.58.2336
    [19] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管.  , 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [20] 杨海涛, 申承民, 杜世萱, 苏轶坤, 王岩国, 汪裕萍, 高鸿钧. 钴纳米粒子自组装有序阵列与磁性.  , 2003, 52(12): 3114-3119. doi: 10.7498/aps.52.3114
计量
  • 文章访问数:  7628
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-30
  • 修回日期:  2018-05-16
  • 刊出日期:  2018-09-05

/

返回文章
返回
Baidu
map