搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有Dzyaloshinski-Mariya相互作用的两比特XXZ模型的纠缠量子热机

王涛 黄晓理 刘洋 许欢

引用本文:
Citation:

带有Dzyaloshinski-Mariya相互作用的两比特XXZ模型的纠缠量子热机

王涛, 黄晓理, 刘洋, 许欢

Entangled quantum heat engines based on two-qubit XXZ model with Dzyaloshinski-Mariya interaction

Wang Tao, Huang Xiao-Li, Liu Yang, Xu Huan
PDF
导出引用
  • 以带有Dzyaloshinski-Mariya 相互作用的两比特XXZ模型为工作物质构建纠缠量子热机. 在量子热力学平衡态下, 采用Kieu的形式描述了做功与热传递.对于不同的各向异性参数, 分析了热机循环中量子纠缠与热传递、做功以及机械效率等热力学量之间的关系. 结果表明: 在这个纠缠体系中, 热力学第二定律依然成立; 机械效率的等值线图是环状曲线; 当各向异性参数Δ较小时, 热机在C1 > C2 和C1 C2 两区域运行, 当增大Δ值时, 热机只在C1 > C2 区域运行.
    We construct an entangled quantum heat engine based on two-coupled-qubit XXZ model with Dzyaloshinski-Mariya interaction. The work done and the heat transfer are discussed according to the definition first given by Kieu, The relations between the entanglement and heat transfer, work output and efficiency are analyzed for different anisotropic parameters. The results show that the second law of thermodynamics holds in entangled systems and the isolines for the efficiency are looped curves. When the anisotropic parameter Δ is small enough, the heat engine can operate in both C1 > C2 and C1C2, however, when Δ is large, the heat engine operates in C1 > C2 only.
    • 基金项目: 国家自然科学基金(批准号: 11105064)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11105064).
    [1]

    Scovil H E D, Schulz-DuBois E O 1959 Phys. Rev. Lett. 2 262

    [2]

    Geva E, Kosloff R 1992 J. Chem. Phys. 97 4398

    [3]

    Lloyd S 1997 Phys. Rev. A 56 3374

    [4]

    Kosloff R, Geva E, Gordon J 2000 J. Appl. Phys. 87 8093

    [5]

    Feldmann T, Kosloff R 2000 Phys. Rev. E 61 4774

    [6]

    He J Z, Chen J C, Hua B 2002 Phys. Rev. E 65 036145

    [7]

    Wu F, Chen L G, Sun F R, Wu C, Li Q 2006 Phys. Rev. E 73 016103

    [8]

    Wang J H, He J Z, Xin Y 2007 Phys. Scr. 75 227

    [9]

    Rezek Y, Kosloff R 2006 New J. Phys. 8 83

    [10]

    Bender C M, Brody D C, Meister B K 2000 J. Phys. A 33 4427

    [11]

    Quan H T, Liu Y X, Sun C P, Nori F 2007 Phys. Rev. E 76 031105

    [12]

    Quan H T, Zhang P, Sun C P 2006 Phys. Rev. E 73 036122

    [13]

    Henrich M J, Mahler G, Michel M 2007 Phys. Rev. E 75 051118

    [14]

    Abe S, Okuyama S 2011 Phys. Rev. E 83 021121

    [15]

    Wang J H, He J Z, He X 2011 Phys. Rev. E 84 041127

    [16]

    Wang J H, He J Z 2012 J. Appl. Phys. 11 043505

    [17]

    Wang J H, Xiong S Q, He J Z, Liu J T 2012 Acta Phys. Sin. 61 080509 (in Chinese) [王建辉, 熊双泉, 何济洲, 刘江涛 2012 61 080509]

    [18]

    Scully M O, Zubairy M S, Agarwal G S, Walther H 2003 Science 299 862

    [19]

    Scully M O 2010 Phys. Rev. Lett. 104 207701

    [20]

    Dorfman K E, Kim M B, Svidzinsky A A 2011 Phys. Rev. A 84 053829

    [21]

    Scully M O, Chapin K R, Dorfman K E, Kim M B, Svidzinsky A A 2011 Proc. Natl. Acad. Sci. 108 15097

    [22]

    Quan H T 2009 Phys. Rev. E 79 041129

    [23]

    Perrot P 1998 A to Z of Thermodynamics (New York: Oxford university press) p26, 103

    [24]

    Kieu T D 2004 Phys. Rev. Lett. 93 140403

    [25]

    Kieu T D 2006 Eur. Phys. J. D 39 115

    [26]

    Chen J, Yan Z 1998 J. Appl. Phys. 84 1791

    [27]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [28]

    Guo Z, Yan L S, Pan W, Luo B, Xu M F 2011 Acta Phys. Sin. 60 060301 (in Chinese) [郭 振, 闫连山, 潘 伟, 罗 斌, 徐明峰 2011 60 060301]

    [29]

    Lu D M 2011 Acta Phys. Sin. 60 090302 (in Chinese) [卢道明 2011 60 090302]

    [30]

    Zhang T, Liu W T, Chen P X, Li C Z 2007 Phys. Rev. A 75 062102

    [31]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese) [张英丽, 周 斌 2011 60 120301]

    [32]

    He J Z, He X, Zheng J 2012 Chin. Phys. B 21 050303

    [33]

    Xie L J, Zhang D Y, Tang S Q, Zhan X G, Gao F 2009 Chin. Phys. B 18 3203

    [34]

    Wang H, Liu S Q, He J Z 2009 Phys. Rev. E 79 041113

    [35]

    Zhang G F 2008 Eur. Phys. J. D 49123

    [36]

    Dzyaloshkii I 1958 J. Phys. Chem. Sol. 4 241

    [37]

    Moriya T 1960 Phys. Rev. Lett. 4 228

    [38]

    Arnesen M C, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [39]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [40]

    Tong D M 2010 Phys. Rev. Lett. 104 12401

    [41]

    Zeng J Y 2007 Quantum Mechanics (Vol. 2) (Beijing: Science Press) p203 (in Chinese) [曾谨言 2007 量子力学 (卷II) (北京: 科学出版社)第203页]

    [42]

    Marzlin P K, Sanders B C 2004 Phys. Rev. Lett. 93 160408

    [43]

    Tong D M, Singh K, Kwek L C, Oh C H 2005 Phys. Rev. Lett. 95 110407

    [44]

    Tong D M, Singh K, Kwek L C, Oh C H 2007 Phys. Rev. Lett. 98 150402

    [45]

    Rigolin G, Ortiz G 2012 Phys. Rev. A 85 062111

  • [1]

    Scovil H E D, Schulz-DuBois E O 1959 Phys. Rev. Lett. 2 262

    [2]

    Geva E, Kosloff R 1992 J. Chem. Phys. 97 4398

    [3]

    Lloyd S 1997 Phys. Rev. A 56 3374

    [4]

    Kosloff R, Geva E, Gordon J 2000 J. Appl. Phys. 87 8093

    [5]

    Feldmann T, Kosloff R 2000 Phys. Rev. E 61 4774

    [6]

    He J Z, Chen J C, Hua B 2002 Phys. Rev. E 65 036145

    [7]

    Wu F, Chen L G, Sun F R, Wu C, Li Q 2006 Phys. Rev. E 73 016103

    [8]

    Wang J H, He J Z, Xin Y 2007 Phys. Scr. 75 227

    [9]

    Rezek Y, Kosloff R 2006 New J. Phys. 8 83

    [10]

    Bender C M, Brody D C, Meister B K 2000 J. Phys. A 33 4427

    [11]

    Quan H T, Liu Y X, Sun C P, Nori F 2007 Phys. Rev. E 76 031105

    [12]

    Quan H T, Zhang P, Sun C P 2006 Phys. Rev. E 73 036122

    [13]

    Henrich M J, Mahler G, Michel M 2007 Phys. Rev. E 75 051118

    [14]

    Abe S, Okuyama S 2011 Phys. Rev. E 83 021121

    [15]

    Wang J H, He J Z, He X 2011 Phys. Rev. E 84 041127

    [16]

    Wang J H, He J Z 2012 J. Appl. Phys. 11 043505

    [17]

    Wang J H, Xiong S Q, He J Z, Liu J T 2012 Acta Phys. Sin. 61 080509 (in Chinese) [王建辉, 熊双泉, 何济洲, 刘江涛 2012 61 080509]

    [18]

    Scully M O, Zubairy M S, Agarwal G S, Walther H 2003 Science 299 862

    [19]

    Scully M O 2010 Phys. Rev. Lett. 104 207701

    [20]

    Dorfman K E, Kim M B, Svidzinsky A A 2011 Phys. Rev. A 84 053829

    [21]

    Scully M O, Chapin K R, Dorfman K E, Kim M B, Svidzinsky A A 2011 Proc. Natl. Acad. Sci. 108 15097

    [22]

    Quan H T 2009 Phys. Rev. E 79 041129

    [23]

    Perrot P 1998 A to Z of Thermodynamics (New York: Oxford university press) p26, 103

    [24]

    Kieu T D 2004 Phys. Rev. Lett. 93 140403

    [25]

    Kieu T D 2006 Eur. Phys. J. D 39 115

    [26]

    Chen J, Yan Z 1998 J. Appl. Phys. 84 1791

    [27]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [28]

    Guo Z, Yan L S, Pan W, Luo B, Xu M F 2011 Acta Phys. Sin. 60 060301 (in Chinese) [郭 振, 闫连山, 潘 伟, 罗 斌, 徐明峰 2011 60 060301]

    [29]

    Lu D M 2011 Acta Phys. Sin. 60 090302 (in Chinese) [卢道明 2011 60 090302]

    [30]

    Zhang T, Liu W T, Chen P X, Li C Z 2007 Phys. Rev. A 75 062102

    [31]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese) [张英丽, 周 斌 2011 60 120301]

    [32]

    He J Z, He X, Zheng J 2012 Chin. Phys. B 21 050303

    [33]

    Xie L J, Zhang D Y, Tang S Q, Zhan X G, Gao F 2009 Chin. Phys. B 18 3203

    [34]

    Wang H, Liu S Q, He J Z 2009 Phys. Rev. E 79 041113

    [35]

    Zhang G F 2008 Eur. Phys. J. D 49123

    [36]

    Dzyaloshkii I 1958 J. Phys. Chem. Sol. 4 241

    [37]

    Moriya T 1960 Phys. Rev. Lett. 4 228

    [38]

    Arnesen M C, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [39]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [40]

    Tong D M 2010 Phys. Rev. Lett. 104 12401

    [41]

    Zeng J Y 2007 Quantum Mechanics (Vol. 2) (Beijing: Science Press) p203 (in Chinese) [曾谨言 2007 量子力学 (卷II) (北京: 科学出版社)第203页]

    [42]

    Marzlin P K, Sanders B C 2004 Phys. Rev. Lett. 93 160408

    [43]

    Tong D M, Singh K, Kwek L C, Oh C H 2005 Phys. Rev. Lett. 95 110407

    [44]

    Tong D M, Singh K, Kwek L C, Oh C H 2007 Phys. Rev. Lett. 98 150402

    [45]

    Rigolin G, Ortiz G 2012 Phys. Rev. A 85 062111

  • [1] 王子, 任捷. 周期驱动系统的非平衡热输运与热力学几何.  , 2021, 70(23): 230503. doi: 10.7498/aps.70.20211723
    [2] 杨建勇, 陈华俊. 基于超强耦合量子点-纳米机械振子系统的全光学质量传感.  , 2019, 68(24): 246302. doi: 10.7498/aps.68.20190607
    [3] 戚晓秋, 刘冬丽, 戴长建. 量子统计权重对原子场电离效率的影响.  , 2017, 66(7): 073201. doi: 10.7498/aps.66.073201
    [4] 李倩文, 李莹, 张荣, 卢灿灿, 白龙. 线性与非线性传热过程的Curzon-Ahlborn热机在任意功率时的效率.  , 2017, 66(13): 130502. doi: 10.7498/aps.66.130502
    [5] 赵丽梅, 张国锋. 带有Dzyaloshinski-Mariya相互作用的两比特纠缠量子Otto热机和量子Stirling热机.  , 2017, 66(24): 240502. doi: 10.7498/aps.66.240502
    [6] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究.  , 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [7] 王雪松, 冀子武, 王绘凝, 徐明升, 徐现刚, 吕元杰, 冯志红. 关于InGaN/GaN多量子阱结构内量子效率的研究.  , 2014, 63(12): 127801. doi: 10.7498/aps.63.127801
    [8] 郑世燕. 以广义Redlich-Kwong气体为工质的不可逆回热式斯特林热机循环输出功率和效率.  , 2014, 63(17): 170508. doi: 10.7498/aps.63.170508
    [9] 肖波齐, 范金土, 蒋国平, 陈玲霞. 纳米流体对流换热机理分析.  , 2012, 61(15): 154401. doi: 10.7498/aps.61.154401
    [10] 王建辉, 熊双泉, 何济洲, 刘江涛. 以一维谐振子势阱中的单粒子为工质的量子热机性能分析.  , 2012, 61(8): 080509. doi: 10.7498/aps.61.080509
    [11] 马凤英, 苏建坡, 郭茂田, 池泉, 陈明, 余振芳. 微腔面发射器件外量子效率研究.  , 2011, 60(6): 064203. doi: 10.7498/aps.60.064203
    [12] 姜文龙, 孟昭晖, 丛林, 汪津, 王立忠, 韩强, 孟凡超, 高永慧. 双量子阱结构OLED效率和电流的磁效应.  , 2010, 59(9): 6642-6646. doi: 10.7498/aps.59.6642
    [13] 肖海林, 欧阳缮, 聂在平. MIMO量子信道的空间自由度研究.  , 2009, 58(6): 3685-3691. doi: 10.7498/aps.58.3685
    [14] 孙光爱, Darren Hughes, Thilo Pirling, Vincent Ji, 陈波, 陈华, 吴二冬, 张俊. 中子衍射法研究单晶镍基高温合金热机械疲劳引起的应力和晶格错配.  , 2009, 58(4): 2549-2555. doi: 10.7498/aps.58.2549
    [15] 邹继军, 常本康, 杨 智. 指数掺杂GaAs光电阴极量子效率的理论计算.  , 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [16] 王忠纯. 外场驱动对Tavis-Cummings模型中量子态保真度的影响.  , 2006, 55(9): 4624-4630. doi: 10.7498/aps.55.4624
    [17] 周慧君, 程木田, 刘绍鼎, 王取泉, 詹明生, 薛其坤. 各向异性量子点单光子发射的高偏振度特性.  , 2005, 54(9): 4141-4145. doi: 10.7498/aps.54.4141
    [18] 谢华清, 奚同庚, 王锦昌. 纳米流体介质导热机理初探.  , 2003, 52(6): 1444-1449. doi: 10.7498/aps.52.1444
    [19] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度.  , 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [20] 黄永楷, 吴光照. 掺钕钨酸钙的荧光绝对量子效率.  , 1966, 22(8): 958-960. doi: 10.7498/aps.22.958
计量
  • 文章访问数:  7075
  • PDF下载量:  576
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-24
  • 修回日期:  2012-11-07
  • 刊出日期:  2013-03-05

/

返回文章
返回
Baidu
map