搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射频功率对辉光聚合物薄膜结构与光学性质的影响

牛忠彩 何智兵 张颖 韦建军 廖国 杜凯 唐永建

引用本文:
Citation:

射频功率对辉光聚合物薄膜结构与光学性质的影响

牛忠彩, 何智兵, 张颖, 韦建军, 廖国, 杜凯, 唐永建

Influence of radio frequency power on the structure and optical properties of glow discharge polymer films

Niu Zhong-Cai, He Zhi-Bing, Zhang Ying, Wei Jian-Jun, Liao Guo, Du Kai, Tang Yong-Jian
PDF
导出引用
  • 采用三倍频射频辉光放电聚合技术,利用低压等离子聚合装置在不同功率条件下制备辉光放电聚合物(GDP)薄膜. 利用表面轮廓仪、Fourier变换红外光谱仪表征所制备薄膜在不同功率下的生长速率和化学结构, 讨论了功率变化对薄膜生长速度和化学结构的影响.利用元素分析仪和紫外可见光谱仪表征GDP薄膜中碳氢原子比和光学性质. 研究表明:薄膜的生长速率随射频功率的增大先增加后减少,功率为40 W时,生长速率可达到0.34 μm/h. 在波长大于500 nm的可见光区, GDP薄膜的光学透过率都在90%以上. GDP薄膜的光学间隙随射频功率的增大先减少后增加,射频功率为50 W时制备GDP薄膜的光学间隙最小.
    Taking advantage of triple radio frequency, hydrocarbon polymer films are fabricated at different powers by the glow discharge polymerization technology. The deposition rates, the chemical structures, the atomic ratios and the optical properties are studied. The thicknesses of glow discharge polymer (GDP) films are measured by the surface profiler technology. The chemical compositions of GDP films are characterized by FT-IR spectra and element analysis. The optical properties of GDP films are investigated by UV-VIS spectra. With RF power increasing from 20 W to 60 W, the deposition rate of GDP films first increases 0.34 μ m/h, then decreases after the RF power reaches 40 W. In visible light area more than 500 nm, the optical transmittances of all GDP films are more than 90%.The optical band gaps of GDP films first decrease, then reaches the minimum at the RF power of 50 W, then increases when the RF power increases from 20 W to 60 W.
    [1]

    Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Vol.1) (Beijing: Satate Defense Industry Press) pp1-5 (in Chinese) [张钧, 常铁强 2004 激光核聚变靶物理基础 (第一版) (北京:国防工业出版社) 第1-5页]

    [2]

    Zhang B L, He Z B, Wu W D, Liu X H, Yang X D 2009 Acta Phys. Sin. 58 4636 (in Chinese) [张宝玲, 何智兵, 吴卫东, 刘兴华, 杨向东 2009 58 6436]

    [3]

    Mcquillan B W, Nikroo A, Steinman D A, Elsner F H, Czechowicz D G, Hoppe M L, Sixtus M, Miller W J 1996 GA-A22494

    [4]

    Yan J C, He Z B, Yang Z L, Zhang Y, Tang Y J, Wei J J 2011 Acta Phys. Sin. 60 036501 (in Chinese) [闫建成, 何智兵, 阳志林, 张颖, 唐永建, 韦建军 2011 60 036501]

    [5]

    Bouquet N A, Cook R, McQuillan B W, Paguio R, Takagi M 2003 Generral Atomic Report GA-A24483

    [6]

    Alger E, Antipa N, Biesiada T, Bhandarkar S, Castro C, Chen K C, Choate C, Condor A, Dzenitis B, Fair J, Farrell M, Giraldez E, Hamza A, Horner J, Huang H, Johnson M, Kroll J, MorenoK, Montesanti R, Nikroo A, Parham T, Reynolds J, Stadermann M, Suratwala T, Taylor J, Wegner P 2010 Ignition Campaign Target Fabrication, Llnl-ar-459204

    [7]

    Nikroo A, Castillo E, Hilla D, Greenwood A L 2003 General Atomics Report GA-A24453

    [8]

    Biener J, Mirkarimi P B, Tringe J W, Baker S L, Wang Y M, Kucheyev S O, Teslich N E, Wu K J, Hamza A V, Wild C, Woerner E, Koidl P, Bruehne K, Fecht H J 2006 Fusion Science and Technology 49 737

    [9]

    Chen K C, Cook R C, Huang H 2006 Fusion Science and Technology 49 750

    [10]

    Wu W D, Luo J S, Huang Y, Zhang Z W 2000 High Power Laser and Particle Beam 5 593 (in Chinese) [吴卫东, 罗江山, 黄勇, 张占文 2000 强激光与粒子束 12 593]

    [11]

    Bauer M, Schwarz-Selinger T, Jacob W 2005 J. Appl. Phys. 98 073302-I

    [12]

    Jiang X, Beyer W, Reichelt K 1990 J. Appl. Phys. 68 1378

    [13]

    Li H X, Xu Z, Chen J M, Zhou H T, Liu H W 2005 Acta Phys. Sin. 54 1885 (in Chinese) [李红轩, 徐洮, 陈建敏, 周惠娣, 刘惠文 2005 54 1885]

    [14]

    Hirakuri K K, Minorikawa T, Friedbacher G 1997 Thin Solid Film 302 5

    [15]

    Wexler A S 1967 Appl. Spectros. Rev. 1 29

    [16]

    Easton C D, Jacob M V 2009 Thin Solid Film 517 4402

    [17]

    Czechowicz D G, Casillo E R, Nikroo A 2002 General Atomics Report GA-A23753

    [18]

    Ding W Y, Wang H L, Ju D Y, Cai W P 2011 Acta Phys. Sin. 60 028105 (in Chinese) [丁万昱, 王华林, 巨东英, 蔡卫平 2011 60 028105]

    [19]

    Zeng L G, Liu F M, Zhong F W, Ding P, Cai L G, Zhou C C 2011 Acta Phys. Sin. 60 038203 (in Chinese) [曾乐贵, 刘发民, 钟文武, 丁芃, 蔡鲁刚, 周船仓 2011 60 038203]

    [20]

    Choi S, Lee K R, Oh S G, Lee S 2001 Appl. Surf. Sci. 247 217

    [21]

    Liu X H, Wu W D, He Z B, Zhang B L, Wang H B, Cai C Z 2009 High Power Laser and Particle Beam 21 1853 (in Chinese) [刘兴华, 吴卫东, 何智兵, 张宝玲, 王洪斌, 蔡从中 2009 强激光与粒子束 21 1853]

    [22]

    Wang X, Harris H R, Bouldin K, Temkin H, Gangopadhyay S, Strathman M D, West M 2001 Appl. Phys. 87 621

  • [1]

    Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Vol.1) (Beijing: Satate Defense Industry Press) pp1-5 (in Chinese) [张钧, 常铁强 2004 激光核聚变靶物理基础 (第一版) (北京:国防工业出版社) 第1-5页]

    [2]

    Zhang B L, He Z B, Wu W D, Liu X H, Yang X D 2009 Acta Phys. Sin. 58 4636 (in Chinese) [张宝玲, 何智兵, 吴卫东, 刘兴华, 杨向东 2009 58 6436]

    [3]

    Mcquillan B W, Nikroo A, Steinman D A, Elsner F H, Czechowicz D G, Hoppe M L, Sixtus M, Miller W J 1996 GA-A22494

    [4]

    Yan J C, He Z B, Yang Z L, Zhang Y, Tang Y J, Wei J J 2011 Acta Phys. Sin. 60 036501 (in Chinese) [闫建成, 何智兵, 阳志林, 张颖, 唐永建, 韦建军 2011 60 036501]

    [5]

    Bouquet N A, Cook R, McQuillan B W, Paguio R, Takagi M 2003 Generral Atomic Report GA-A24483

    [6]

    Alger E, Antipa N, Biesiada T, Bhandarkar S, Castro C, Chen K C, Choate C, Condor A, Dzenitis B, Fair J, Farrell M, Giraldez E, Hamza A, Horner J, Huang H, Johnson M, Kroll J, MorenoK, Montesanti R, Nikroo A, Parham T, Reynolds J, Stadermann M, Suratwala T, Taylor J, Wegner P 2010 Ignition Campaign Target Fabrication, Llnl-ar-459204

    [7]

    Nikroo A, Castillo E, Hilla D, Greenwood A L 2003 General Atomics Report GA-A24453

    [8]

    Biener J, Mirkarimi P B, Tringe J W, Baker S L, Wang Y M, Kucheyev S O, Teslich N E, Wu K J, Hamza A V, Wild C, Woerner E, Koidl P, Bruehne K, Fecht H J 2006 Fusion Science and Technology 49 737

    [9]

    Chen K C, Cook R C, Huang H 2006 Fusion Science and Technology 49 750

    [10]

    Wu W D, Luo J S, Huang Y, Zhang Z W 2000 High Power Laser and Particle Beam 5 593 (in Chinese) [吴卫东, 罗江山, 黄勇, 张占文 2000 强激光与粒子束 12 593]

    [11]

    Bauer M, Schwarz-Selinger T, Jacob W 2005 J. Appl. Phys. 98 073302-I

    [12]

    Jiang X, Beyer W, Reichelt K 1990 J. Appl. Phys. 68 1378

    [13]

    Li H X, Xu Z, Chen J M, Zhou H T, Liu H W 2005 Acta Phys. Sin. 54 1885 (in Chinese) [李红轩, 徐洮, 陈建敏, 周惠娣, 刘惠文 2005 54 1885]

    [14]

    Hirakuri K K, Minorikawa T, Friedbacher G 1997 Thin Solid Film 302 5

    [15]

    Wexler A S 1967 Appl. Spectros. Rev. 1 29

    [16]

    Easton C D, Jacob M V 2009 Thin Solid Film 517 4402

    [17]

    Czechowicz D G, Casillo E R, Nikroo A 2002 General Atomics Report GA-A23753

    [18]

    Ding W Y, Wang H L, Ju D Y, Cai W P 2011 Acta Phys. Sin. 60 028105 (in Chinese) [丁万昱, 王华林, 巨东英, 蔡卫平 2011 60 028105]

    [19]

    Zeng L G, Liu F M, Zhong F W, Ding P, Cai L G, Zhou C C 2011 Acta Phys. Sin. 60 038203 (in Chinese) [曾乐贵, 刘发民, 钟文武, 丁芃, 蔡鲁刚, 周船仓 2011 60 038203]

    [20]

    Choi S, Lee K R, Oh S G, Lee S 2001 Appl. Surf. Sci. 247 217

    [21]

    Liu X H, Wu W D, He Z B, Zhang B L, Wang H B, Cai C Z 2009 High Power Laser and Particle Beam 21 1853 (in Chinese) [刘兴华, 吴卫东, 何智兵, 张宝玲, 王洪斌, 蔡从中 2009 强激光与粒子束 21 1853]

    [22]

    Wang X, Harris H R, Bouldin K, Temkin H, Gangopadhyay S, Strathman M D, West M 2001 Appl. Phys. 87 621

  • [1] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究.  , 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [2] 黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根. 二维黑磷的光学性质.  , 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [3] 颜俊, 王子毅, 曾若生, 邹炳锁. 零维Sb3+掺杂Rb7Bi3Cl16金属卤化物的三重态自陷激子发射.  , 2021, 70(24): 247801. doi: 10.7498/aps.70.20211024
    [4] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算.  , 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [5] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质.  , 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [6] 孙智征, 荀威, 张加永, 刘传洋, 仲嘉霖, 吴银忠. 钛酸钡的光学性质及其体积效应.  , 2019, 68(8): 087801. doi: 10.7498/aps.68.20182087
    [7] 苏锐, 张红, 姜胜利, 陈军, 韩伟. 熔石英中过氧缺陷及中性氧空位缺陷的几何结构、电子结构和吸收光谱的准粒子计算.  , 2016, 65(2): 027801. doi: 10.7498/aps.65.027801
    [8] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质.  , 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [9] 刘检, 刘廷禹, 李海心, 刘凤明. In2O3晶体电子结构和光吸收机理研究.  , 2015, 64(19): 193101. doi: 10.7498/aps.64.193101
    [10] 王瑨, 李春梅, 敖靖, 李凤, 陈志谦. IVB族过渡金属氮化物弹性与光学性质研究.  , 2013, 62(8): 087102. doi: 10.7498/aps.62.087102
    [11] 李志国, 刘玮, 何静婧, 李祖亮, 韩安军, 张超, 周志强, 张毅, 孙云. Stage2沉积速率对低温生长CIGS薄膜特性及器件的影响.  , 2013, 62(3): 038803. doi: 10.7498/aps.62.038803
    [12] 潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威. -AlON晶体电子结构和光学性质研究.  , 2012, 61(2): 027101. doi: 10.7498/aps.61.027101
    [13] 冯现徉, 逯瑶, 蒋雷, 张国莲, 张昌文, 王培吉. In掺杂ZnO超晶格光学性质的研究.  , 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [14] 孙中华, 王红艳, 张志东, 张中月. 金纳米环结构的光学性质研究.  , 2011, 60(4): 047808. doi: 10.7498/aps.60.047808
    [15] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究.  , 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [16] 岑忞, 章岳光, 陈卫兰, 顾培夫. 沉积速率和氧分压对HfO2薄膜残余应力的影响.  , 2009, 58(10): 7025-7029. doi: 10.7498/aps.58.7025
    [17] 关 丽, 刘保亭, 李 旭, 赵庆勋, 王英龙, 郭建新, 王书彪. 萤石结构TiO2的电子结构和光学性质.  , 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [18] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质.  , 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [19] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究.  , 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [20] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质.  , 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
计量
  • 文章访问数:  7313
  • PDF下载量:  533
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-18
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

/

返回文章
返回
Baidu
map