搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In2O3晶体电子结构和光吸收机理研究

刘检 刘廷禹 李海心 刘凤明

引用本文:
Citation:

In2O3晶体电子结构和光吸收机理研究

刘检, 刘廷禹, 李海心, 刘凤明

Study on the electronic structures and the optical absorption mechanism of In2O3 crystals

Liu Jian, Liu Ting-Yu, Li Hai-Xin, Liu Feng-Ming
PDF
导出引用
  • 为了得到准确的In2O3晶体电子结构, 本文分别采用GGA, GGA+U, HSE06的方法计算了电子结构, 并进行了G0W0修正, 通过比较计算结果, 得到HSE06+G0W0方法计算得到的禁带宽带最接近实验结果. 在此基础上使用Hedin的G0W0近似方法和Bethe-Salpeter方程计算得到了In2O3晶体的光学性质, 计算结果与实验结果吻合很好, 在此基础上通过对准粒子能带结构、光学跃迁矩阵和光学吸收谱的分析, 给出了In2O3晶体的光学跃迁机理.
    Indium oxide with its wide gap is a multifunctional semiconductor material, which has gained application in many areas. Indium oxide films show high electrical property and high transparency, which have been applied in OLED display, flat-panel display, thin film solar cells, etc. However, the mechanisms of both high electrical and high transparent properties are still not clear up to now. So in this paper, the electronic structures of the In2O3 crystals are studied by GGA, GGA+U, HSE06 and G0W0 corrections. The mechanisms of optical transition and formation of transparent electrode in In2O3 crystals are studied using Hedin's G0W0 approximation and the Bethe-Salpeter equation. The complex refractive index, complex dielectric function and optical absorption spectrum of the In2O3 crystal have been obtained, which are in good agreement with experimental results. By analyzing the quasi-particle band structures, optical transition matrix and optical absorption spectrum, the mechanisms of optical transition and formation of transparent electrode in In2O3 can be interpreted. BSE (Bethe-Salpeter equation) calculation results show that the transition from 8 to 1 is permitted, however, the transition probability is far less than that from 10 to 1. This is because, for 8 to 1 transition, there are three even symmetry bands and two odd symmetry bands, in which only the transition from two odd symmetry bands to the conduction band is permitted. Other causes for this phenomenon are that in the In2O3 primitive cell there exist some overlapping bands, which result in the false transition. Therefore, this work argues that in the In2O3 crystals optical band gap is 4.167 eV, which corresponds to the direct transition from 10 to 1. This result will help understand the mechanisms of optical transition and the transparent electrode in In2O3.
      通信作者: 刘廷禹, liuyyxj@163.com
    • 基金项目: 沪江基金(批准号: B14004)资助的课题.
      Corresponding author: Liu Ting-Yu, liuyyxj@163.com
    • Funds: Project supported by the Hujiang Foundation, China (Grant No. B14004).
    [1]

    Gordon R G 2000 MRS Bull. 25 52

    [2]

    Hartnagel H L, Dawar A K J, Jagadish C 1995 Semiconducting Transparent Thin Films (Bristol: Institute of Physics Publishing), 110-126

    [3]

    Hung L S, Chen C H 2002 Mater. Sci. Eng.: R: Reports 39 143

    [4]

    Matino F, Persano L, Arima V, Pisignano D, Blyth RIR, Cingolani R, Rinaldi Ross 2005 Phys. Rev. B 72 085437

    [5]

    Zhao H X, Chen X L, Yang X, Du J, Bai L S, Chen Z, Zhao Y, Zhang X D 2014 Acta Phys. Sin. 63 056801(in Chinese) [赵慧旭, 陈新亮, 杨旭, 杜建, 白立沙, 陈泽, 赵颖, 张晓丹 2014 63 056801]

    [6]

    Hashimoto R, Abe Y, Nakada T 2008 App. Phys. Express 1 015002

    [7]

    Gupta R K, Ghosh K, Mishra S R, Kahol P K 2008 Thin Solid Films 516 3204

    [8]

    Granqvist C G, Hultker A 2002 Thin Solid Films 411 1

    [9]

    Murali K R, Elango P, Andavan P, Venkatachalam K 2008 J. Mater. Sci.-Mate. in Electron. 19 289

    [10]

    Kundakci M, Grbulak B, Doğan S, Ate A, Yildirim M 2008 App. Phys. A 90 479

    [11]

    Bouabid K, Ihlal A, Amira Y, Sdaq A, Outzourhit A, Nouet G 2007 The Eur. Phys. J. Appl. Phys. 40 149

    [12]

    Jiang D Y, Shen D Z, Liu K W, Shan C X, Zhao Y M, Yang T, Yao B, Lu Y M, Zhang J Y 2008 Semicond. Sci. Technol. 23 035002

    [13]

    Weiher R L, Ley R P 1966 J. Appl. Phys. 37 299

    [14]

    Saha S, Pal U, Chaudhuri A K, Rao V V, Banerjee H D 1989 Phys. Status Solidi A 114 721

    [15]

    Galdikas A, Mironas A, Senulienc D, etkus A 1998 Thin solid films 323 275

    [16]

    Novkovski N, Tanuevski A 2008 Semicond. Sci. Technol. 23 095012

    [17]

    Walsh A, Silva J L F D, Wei S H, Krber C, Klein A, Piper L F J, Demasi A, Smith K E, Panaccione G, Torelli P 2008 Phys. Rev. Lett. 100 167402

    [18]

    goston P, Erhart P, Klein A, Albe K 2009 J. Phys. Condens. Matter 21 455801

    [19]

    Erhart P, Klein A, Egdell R G, Albe K 2007 Phys. Rev. B 75 153205

    [20]

    King P D C, Veal T D, Fuchs F, Wang C Y, Payne D J, Bourlange A, Zhang H, Bell G R, V. Cimalla, Ambacher O, Egdell R G, Bechstedt F, McConville C F 2009 Phys. Rev. B 79 205211

    [21]

    Luttinger J M, Ward J C 1960 Phys. Rev. 118 1417

    [22]

    Rinke P, Schleife A, Kioupakis E, Janotti A, Rdl C, Bechstedt F, Scheffler M, Van De Walle C G 2012 Phys. Rev. Lett. 108 126404

    [23]

    Gao S P, Zhu T 2012 Acta Phys. Sin. 61 137103(in Chinese) [高尚鹏, 祝桐 2012 61 137103]

    [24]

    Rinke P, Janotti A, Scheffler M, Van De Walle C G 2009 Phys. Rev. Lett. 102 026402

    [25]

    Onida G, Reining L, Rubio A 2002 Rev. Mod. Phys. 74 601

    [26]

    F Fuchs, C Rdl, A Schleife, F Bechstedt 2008 Phys. Rev. B 78 085103

    [27]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [28]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [29]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [32]

    Kresse G, Jouber Dt 1999 Phys. Rev. B 59 1758

    [33]

    Fuchs F, Bechstedt F 2008 Phys. Rev. B 77 155107

  • [1]

    Gordon R G 2000 MRS Bull. 25 52

    [2]

    Hartnagel H L, Dawar A K J, Jagadish C 1995 Semiconducting Transparent Thin Films (Bristol: Institute of Physics Publishing), 110-126

    [3]

    Hung L S, Chen C H 2002 Mater. Sci. Eng.: R: Reports 39 143

    [4]

    Matino F, Persano L, Arima V, Pisignano D, Blyth RIR, Cingolani R, Rinaldi Ross 2005 Phys. Rev. B 72 085437

    [5]

    Zhao H X, Chen X L, Yang X, Du J, Bai L S, Chen Z, Zhao Y, Zhang X D 2014 Acta Phys. Sin. 63 056801(in Chinese) [赵慧旭, 陈新亮, 杨旭, 杜建, 白立沙, 陈泽, 赵颖, 张晓丹 2014 63 056801]

    [6]

    Hashimoto R, Abe Y, Nakada T 2008 App. Phys. Express 1 015002

    [7]

    Gupta R K, Ghosh K, Mishra S R, Kahol P K 2008 Thin Solid Films 516 3204

    [8]

    Granqvist C G, Hultker A 2002 Thin Solid Films 411 1

    [9]

    Murali K R, Elango P, Andavan P, Venkatachalam K 2008 J. Mater. Sci.-Mate. in Electron. 19 289

    [10]

    Kundakci M, Grbulak B, Doğan S, Ate A, Yildirim M 2008 App. Phys. A 90 479

    [11]

    Bouabid K, Ihlal A, Amira Y, Sdaq A, Outzourhit A, Nouet G 2007 The Eur. Phys. J. Appl. Phys. 40 149

    [12]

    Jiang D Y, Shen D Z, Liu K W, Shan C X, Zhao Y M, Yang T, Yao B, Lu Y M, Zhang J Y 2008 Semicond. Sci. Technol. 23 035002

    [13]

    Weiher R L, Ley R P 1966 J. Appl. Phys. 37 299

    [14]

    Saha S, Pal U, Chaudhuri A K, Rao V V, Banerjee H D 1989 Phys. Status Solidi A 114 721

    [15]

    Galdikas A, Mironas A, Senulienc D, etkus A 1998 Thin solid films 323 275

    [16]

    Novkovski N, Tanuevski A 2008 Semicond. Sci. Technol. 23 095012

    [17]

    Walsh A, Silva J L F D, Wei S H, Krber C, Klein A, Piper L F J, Demasi A, Smith K E, Panaccione G, Torelli P 2008 Phys. Rev. Lett. 100 167402

    [18]

    goston P, Erhart P, Klein A, Albe K 2009 J. Phys. Condens. Matter 21 455801

    [19]

    Erhart P, Klein A, Egdell R G, Albe K 2007 Phys. Rev. B 75 153205

    [20]

    King P D C, Veal T D, Fuchs F, Wang C Y, Payne D J, Bourlange A, Zhang H, Bell G R, V. Cimalla, Ambacher O, Egdell R G, Bechstedt F, McConville C F 2009 Phys. Rev. B 79 205211

    [21]

    Luttinger J M, Ward J C 1960 Phys. Rev. 118 1417

    [22]

    Rinke P, Schleife A, Kioupakis E, Janotti A, Rdl C, Bechstedt F, Scheffler M, Van De Walle C G 2012 Phys. Rev. Lett. 108 126404

    [23]

    Gao S P, Zhu T 2012 Acta Phys. Sin. 61 137103(in Chinese) [高尚鹏, 祝桐 2012 61 137103]

    [24]

    Rinke P, Janotti A, Scheffler M, Van De Walle C G 2009 Phys. Rev. Lett. 102 026402

    [25]

    Onida G, Reining L, Rubio A 2002 Rev. Mod. Phys. 74 601

    [26]

    F Fuchs, C Rdl, A Schleife, F Bechstedt 2008 Phys. Rev. B 78 085103

    [27]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [28]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [29]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [32]

    Kresse G, Jouber Dt 1999 Phys. Rev. B 59 1758

    [33]

    Fuchs F, Bechstedt F 2008 Phys. Rev. B 77 155107

  • [1] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. 电场对GaN/g-C3N4异质结电子结构和光学性质影响的第一性原理研究.  , 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [2] 邢海英, 郑智健, 张子涵, 吴文静, 郭志英. 应力调控BlueP/X Te2 (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究.  , 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [3] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质.  , 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [4] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究.  , 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [5] 吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波. 硫化锡电子结构和光学性质的量子尺寸效应.  , 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [6] 李建华, 崔元顺, 曾祥华, 陈贵宾. ZnS结构相变、电子结构和光学性质的研究.  , 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [7] 潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威. -AlON晶体电子结构和光学性质研究.  , 2012, 61(2): 027101. doi: 10.7498/aps.61.027101
    [8] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究.  , 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [9] 孙中华, 王红艳, 张志东, 张中月. 金纳米环结构的光学性质研究.  , 2011, 60(4): 047808. doi: 10.7498/aps.60.047808
    [10] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究.  , 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [11] 史力斌, 李容兵, 成爽, 李明标. 关于Zn1-xBexO电子结构和光学性质的研究.  , 2009, 58(9): 6446-6452. doi: 10.7498/aps.58.6446
    [12] 胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋. Fe和Ni共掺杂ZnO的电子结构和光学性质.  , 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [13] 李晓凤, 姬广富, 彭卫民, 申筱濛, 赵峰. 高压下固态Kr弹性性质、电子结构和光学性质的第一性原理计算.  , 2009, 58(4): 2660-2666. doi: 10.7498/aps.58.2660
    [14] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究.  , 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [15] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质.  , 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [16] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究.  , 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [17] 关 丽, 刘保亭, 李 旭, 赵庆勋, 王英龙, 郭建新, 王书彪. 萤石结构TiO2的电子结构和光学性质.  , 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [18] 丁迎春, 向安平, 徐 明, 祝文军. 掺稀土元素(Y,La)的γ-Si3N4的电子结构和光学性质.  , 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [19] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质.  , 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [20] 潘洪哲, 徐 明, 祝文军, 周海平. β-Si3N4电子结构和光学性质的第一性原理研究.  , 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
计量
  • 文章访问数:  7147
  • PDF下载量:  363
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-26
  • 修回日期:  2015-06-01
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map