搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层耦合Lengel-Epstein模型中的超点阵斑图

白占国 董丽芳 李永辉 范伟丽

引用本文:
Citation:

双层耦合Lengel-Epstein模型中的超点阵斑图

白占国, 董丽芳, 李永辉, 范伟丽

Superlattice patterns in a coupled two-layer Lengel-Epstein model

Bai Zhao-Guo, Dong Li-Fang, Li Yong-Hui, Fan Wei-Li
PDF
导出引用
  • 用双层耦合的Lengel-Epstein模型, 研究了两个子系统的图灵模对斑图的影响,发现其波数比在斑图的形成和选择过程中起着重要作用.当波数比为1时,双层系统未能发生耦合,只能出现条纹和六边形斑图;当波数比处于1-√17 的范围时,两子系统发生耦合,图灵模之间发生共振相互作用,得到种类丰富的超点阵斑图,包括暗点、点-棒和复杂超六边、Ⅰ-型和Ⅱ-型白眼、类蜂窝和环状超六边等斑图;当波数比大于√17 , 系统选择的斑图类型不再变化,均为环状超六边斑图.数值模拟得到的条纹、六边形、超六边点阵、Ⅱ-型白眼斑图和类蜂窝斑图均已在介质阻挡放电系统实验中观察到. 另外,还得到了超点阵斑图的波数随两个扩散系数乘积DuDv的变化曲线,发现其随的DuDv增大而减小.
    The influence of Turing modes in two subsystems on pattern formation is investigated by using the two-layer coupled Lengel-Epstein model. It is found that the wave number ratio between two Turing modes play an important role in the pattern formation and pattern selection. When the wave number ratio is 1, no coupling behavior occurs between two subsystems and only stripe and hexagon patterns arise in system. If the wave number ratio lies in a range of 1-√17, a variety of superlattice patterns, such as dark-dot, bar-dot and complex super hexagons, I-type or II-type white-eye, honeycomb-like, and superhexagon of circle, are obtained due to the resonance interaction between the two Turing modes in the coupled systems. When the wave number ratio is greater than √17, the superhexagon of circle is always selected and unchanged. Some superlattice patterns above, including stripes, hexagons, super hexagon, Ⅱ-type white-eye, and honeycomb-like patterns, are observed experimentally in a dielectric barrier discharge (DBD) system. In addition, the curves for variation of hexagon pattern wave number with the increase of the product of two diffusion coefficients are obtained and it is found that the wave number becomes smaller with DuDv increasing.
    • 基金项目: 国家自然科学基金(批准号:10975043),河北省自然科学基金(批准号: 2010000185)和河北省教育厅重点项目(批准号:ZD2010140)资助的课题.
    [1]

    Barrio R A, Varea C, Aragon J L, Maini P K 1999 Math. Biol. 61 483

    [2]

    Maini P K, Painter K J, Chau J 1999 Chem. Soc. Faraday Trans. 93 3601

    [3]

    Epstein T, Fineberg J 2008 Phys. Rev. Lett. 100 134101

    [4]

    Conway J M, Riecke H 2007 Phys. Rev. Lett. 99 218301

    [5]

    Conway J M, Riecke H 2007 Phys. Rev. E 76 057202

    [6]

    Hu H X, Li Q S, Ji L 2008 Phys. Chem. Chem. Phys. 10 438

    [7]

    Dong L F, Xie W X, Zhao H T, Fan W L, He Y F, Xiao H 2009 Acta Phys. Sin. 58 4806 (in Chinese) [董丽芳、谢伟霞、赵海涛、范伟丽、贺亚峰、肖 红 2009 58 4806]

    [8]

    Dong L F, Zhao H T, Xie W X, Wang H F, Liu W L, Fan W L, Xiao H 2008 Acta Phys. Sin. 57 5768 (in Chinese) [董丽芳、赵海涛、谢伟霞、王红芳、刘微粒、范伟丽、肖 红 2008 57 5768]

    [9]

    Dong L F, Liu W L, Wang H F, He Y F, Fan W L, Gao R L 2007 Phys. Rev. E 76 046210

    [10]

    He Y F, Dong L F, Liu W L, Wang H F, Zhao Z C, Fan W L 2007 Phys. Rev. E 76 017203

    [11]

    Dong L F, Fan W L, He Y F,Liu F C, Li S F, Gao R L, Wang L 2006 Phys. Rev. E 73 066206

    [12]

    Shao X J, Ma Y, Li Y X, Zhang G J 2010 Acta Phys. Sin. 59 8747 (in Chinese) [邵先军、马 跃、李娅西、张冠军 2010 59 8747]

    [13]

    Xia G Q, Xue W H, Chen M L,Zhu Y, Zhu G Q 2011 Acta Phys. Sin. 60 015201 (in Chinese) [夏广庆、薛伟华、陈茂林、朱 雨、朱国强 2011 60 015201]

    [14]

    Doelman A, Van Harten A 1995 Nonlinear Dynamics and Pattern Formation in the Natural Environment (Longman) p223

    [15]

    Schenk C P, Schutz P, Bode M, Purwins H G 1998 Phys. Rev. E 57 6480

    [16]

    Barrio R A, Varea C, Aragon J L, Maini P K 1999 Bull. Math. Biol. 61 483

    [17]

    Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2002 Phys. Rev. Lett. 88 208303

    [18]

    Zhou C X, Guo H Y, Ouyang Q 2002 Phys. Rev. E 65 036118

    [19]

    Berenstein I, Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2005 J. Phys. Chem. A 109 5382

    [20]

    Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2006 Chaos 16 037114

    [21]

    Bachir M, Metens S, Borckmans P, Dewel G 2001 Europhys. Lett. 54 612

    [22]

    Page K M, Maini P K, Monk N A M 2005 Physica D 202 95

    [23]

    Lengyel I, Epstein I R 1991 Science 251 650

    [24]

    Ouyang Q 2000 Pattern Formation in Reaction-Diffusion Systems (Shanghai: Shanghai Scientific & Technological Education Publishing House) p12 (in Chinese) [欧阳颀 2000 反应扩散系统中的斑图动力学(上海:上海科技教育出版社)第12页]

    [25]

    Dong L F, Xiao H, Fan W L Zhao H T, Yue H 2010 IEEE Trans. on Plas. Sci. 38 2486

    [26]

    Dong L F, Qi Y Y, Zhao Z C, Li Y H 2008 Plas. Sourc. Sci. Technol. 17 015015

    [27]

    Francis F C 1974 Introduction to Plasma Physics(California: Plenum Press)p90

  • [1]

    Barrio R A, Varea C, Aragon J L, Maini P K 1999 Math. Biol. 61 483

    [2]

    Maini P K, Painter K J, Chau J 1999 Chem. Soc. Faraday Trans. 93 3601

    [3]

    Epstein T, Fineberg J 2008 Phys. Rev. Lett. 100 134101

    [4]

    Conway J M, Riecke H 2007 Phys. Rev. Lett. 99 218301

    [5]

    Conway J M, Riecke H 2007 Phys. Rev. E 76 057202

    [6]

    Hu H X, Li Q S, Ji L 2008 Phys. Chem. Chem. Phys. 10 438

    [7]

    Dong L F, Xie W X, Zhao H T, Fan W L, He Y F, Xiao H 2009 Acta Phys. Sin. 58 4806 (in Chinese) [董丽芳、谢伟霞、赵海涛、范伟丽、贺亚峰、肖 红 2009 58 4806]

    [8]

    Dong L F, Zhao H T, Xie W X, Wang H F, Liu W L, Fan W L, Xiao H 2008 Acta Phys. Sin. 57 5768 (in Chinese) [董丽芳、赵海涛、谢伟霞、王红芳、刘微粒、范伟丽、肖 红 2008 57 5768]

    [9]

    Dong L F, Liu W L, Wang H F, He Y F, Fan W L, Gao R L 2007 Phys. Rev. E 76 046210

    [10]

    He Y F, Dong L F, Liu W L, Wang H F, Zhao Z C, Fan W L 2007 Phys. Rev. E 76 017203

    [11]

    Dong L F, Fan W L, He Y F,Liu F C, Li S F, Gao R L, Wang L 2006 Phys. Rev. E 73 066206

    [12]

    Shao X J, Ma Y, Li Y X, Zhang G J 2010 Acta Phys. Sin. 59 8747 (in Chinese) [邵先军、马 跃、李娅西、张冠军 2010 59 8747]

    [13]

    Xia G Q, Xue W H, Chen M L,Zhu Y, Zhu G Q 2011 Acta Phys. Sin. 60 015201 (in Chinese) [夏广庆、薛伟华、陈茂林、朱 雨、朱国强 2011 60 015201]

    [14]

    Doelman A, Van Harten A 1995 Nonlinear Dynamics and Pattern Formation in the Natural Environment (Longman) p223

    [15]

    Schenk C P, Schutz P, Bode M, Purwins H G 1998 Phys. Rev. E 57 6480

    [16]

    Barrio R A, Varea C, Aragon J L, Maini P K 1999 Bull. Math. Biol. 61 483

    [17]

    Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2002 Phys. Rev. Lett. 88 208303

    [18]

    Zhou C X, Guo H Y, Ouyang Q 2002 Phys. Rev. E 65 036118

    [19]

    Berenstein I, Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2005 J. Phys. Chem. A 109 5382

    [20]

    Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2006 Chaos 16 037114

    [21]

    Bachir M, Metens S, Borckmans P, Dewel G 2001 Europhys. Lett. 54 612

    [22]

    Page K M, Maini P K, Monk N A M 2005 Physica D 202 95

    [23]

    Lengyel I, Epstein I R 1991 Science 251 650

    [24]

    Ouyang Q 2000 Pattern Formation in Reaction-Diffusion Systems (Shanghai: Shanghai Scientific & Technological Education Publishing House) p12 (in Chinese) [欧阳颀 2000 反应扩散系统中的斑图动力学(上海:上海科技教育出版社)第12页]

    [25]

    Dong L F, Xiao H, Fan W L Zhao H T, Yue H 2010 IEEE Trans. on Plas. Sci. 38 2486

    [26]

    Dong L F, Qi Y Y, Zhao Z C, Li Y H 2008 Plas. Sourc. Sci. Technol. 17 015015

    [27]

    Francis F C 1974 Introduction to Plasma Physics(California: Plenum Press)p90

  • [1] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟.  , 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [2] 彭皓, 任芮彬, 钟扬帆, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象.  , 2022, 71(3): 030502. doi: 10.7498/aps.71.20211272
    [3] 彭皓, 任芮彬, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象研究.  , 2021, (): . doi: 10.7498/aps.70.20211272
    [4] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究.  , 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [5] 王存海, 郑树, 张欣欣. 非规则形状介质内辐射-导热耦合传热的间断有限元求解.  , 2020, 69(3): 034401. doi: 10.7498/aps.69.20191185
    [6] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究.  , 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [7] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析.  , 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [8] 刘富成, 刘雅慧, 周志向, 郭雪, 董梦菲. 双层耦合非对称反应扩散系统中的超点阵斑图.  , 2020, 69(2): 028201. doi: 10.7498/aps.69.20191353
    [9] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟.  , 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [10] 吴魏霞, 宋艳丽, 韩英荣. 二维耦合定向输运模型研究.  , 2015, 64(15): 150501. doi: 10.7498/aps.64.150501
    [11] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟.  , 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [12] 白占国, 李新政, 李燕, 赵昆. 气体放电系统中多臂螺旋波的数值分析.  , 2014, 63(22): 228201. doi: 10.7498/aps.63.228201
    [13] 殷鹏飞, 张蓉, 熊江涛, 李京龙. 搅拌摩擦焊准稳态热力耦合过程数值模拟研究.  , 2013, 62(1): 018102. doi: 10.7498/aps.62.018102
    [14] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟.  , 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [15] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究.  , 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [16] 董丽芳, 杨玉杰, 范伟丽, 岳晗, 王帅, 肖红. 介质阻挡放电中放电丝结构相变过程研究.  , 2010, 59(3): 1917-1922. doi: 10.7498/aps.59.1917
    [17] 林 敏, 方利民, 朱若谷. 双频信号作用下耦合双稳系统的双共振特性.  , 2008, 57(5): 2638-2642. doi: 10.7498/aps.57.2638
    [18] 莫嘉琪, 王 辉, 林万涛, 林一骅. 赤道东太平洋SST的海-气振子模型.  , 2006, 55(1): 6-9. doi: 10.7498/aps.55.6
    [19] 崔元顺. 介观多环耦合系统中的量子电流增强效应.  , 2005, 54(4): 1799-1803. doi: 10.7498/aps.54.1799
    [20] 张旭, 沈柯. 时空混沌的单向耦合同步.  , 2002, 51(12): 2702-2706. doi: 10.7498/aps.51.2702
计量
  • 文章访问数:  8548
  • PDF下载量:  638
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-18
  • 修回日期:  2011-02-27
  • 刊出日期:  2011-11-15

/

返回文章
返回
Baidu
map