-
Using first-principles calculations based on density functional theory with a plane-wave ultrasoft pseudopotential approach, we conduct computations using the CASTEP (Cambridge Sequential Total Energy Package) module within the Materials Studio software. The electronic band structures, densities of states, and optical properties of intrinsic monolayer WTe2, monolayer WTe2 with a single tellurium vacancy (VTe), and rare-earth-doped VTe-containing monolayer WTe2 (VTe-X, where X = Ce, Yb, Eu) are systematically investigated to explore the synergistic effects of rare-earth doping and tellurium vacancy defects on the optical properties of monolayer WTe2. The results indicate that compared with the VTe model, the VTe-X models lead to a more pronounced enhancement of the optical performance in the infrared region (0–1.2 eV). All of VTe-X structures exhibit metallic characteristics, with a notable increase in the density of states near the Fermi level. In particular, the VTe-Yb model demonstrates significant improvement in the infrared range: the absorption coefficient, reflectivity, static dielectric constant, and peak value of the imaginary part of the dielectric function are enhanced by factors of 3.76, 1.83, 2.63, and 24.20, respectively, compared with those of pristine monolayer WTe2. This study provides a theoretical foundation for designing infrared photodetectors based on monolayer WTe2 substrates.
-
Keywords:
- monolayer WTe2 /
- first principles /
- optical property
[1] Wu D, Mo Z H, Li X, Ren X Y, Shi Z F, Li X J, Zhang L, Yu X C, Peng H X, Zeng L H, Shan C X 2024 Appl. Phys. Rev. 11 041401
Google Scholar
[2] Zhu S H, Liu H, Wu J X, Mei J L, Zhang R, Liu Y, Chen Y, Cai X H 2025 ACS Appl. Mater. Int. 17 22060
Google Scholar
[3] Song T C, Jia Y, Yu G, Tang Y, Uzan A J, Zheng Z Y J, Guan H S, Onyszczak M, Singha R 2025 Phys. Rev. Res. 7 013224
Google Scholar
[4] Kim H, Yoo Y D 2025 Adv. Sci. 12 2500516
Google Scholar
[5] Yang H, Synnatschke K, Yoon J, Mirhosseini H, Hermes I M, Li X D, Neumann C, Morag A, Turchanin A, Kühne T D, Parkin S S P, Yang S, Nia A S, Feng X L 2025 ACS. Nano. 19 14309
Google Scholar
[6] Song T C, Jia Y Y, Yu G, Tang Y, Wang P J, Singha R, Gui X, Uzan-Narovlansky A J, Onyszczak M, Watanabe K, Taniguchi T, Cava R J, Schoop L M, Ong N P, Wang S F 2024 Nat. Phys. 20 269
Google Scholar
[7] Xu S Y, Ma Q, Shen H T, Fatemi V, Wu S F, Chang T R, Chang G Q, Mier Valdivia A M, Chan C K, Gibson Q D, Zhou J D, Liu Z, Watanabe K, Taniguchi T, Lin H, Cava R J, Fu L, Gedik N, Jarillo-Herrero P 2018 Nat. Phys. 14 900
Google Scholar
[8] Liu X, Zhao H Q, Chen Y, Liang X X, Liu S X, Huang Z Q, Wu Z P, Mao Y L, Shi X 2024 Mater. Today Chem. 38 102077
Google Scholar
[9] Liu Y W, Xiao C, Li Z, Xie Y 2016 Adv. Energy Mater. 6 1600436
Google Scholar
[10] Li J, Liang Y C, Li X X, Wei G M, Zhang Z H, Chen Q 2025 Mole. Cata. 579 115048
[11] Schuler B, Qiu D Y, Refaely-Abramson S, Kastl C, Chen C, Barja S, Koch R, Ogletree F, Aloni S 2019 Phys. Rev. Lett. 123 076801
Google Scholar
[12] Yelgel C, Yelgel Ö C 2024 Model. Sim. Mater. Sci. Eng. 32 085016
Google Scholar
[13] Wu D, Guo J W, Wang C Q, Ren X Y, Chen Y S, Lin P, Zeng L H, Shi Z F, Li X J, Shan C X, Jie J S 2021 ACS Nano 15 10119
Google Scholar
[14] Torun E, Sahin H, Cahangirov S, Rubio A, Peeters F M 2016 J. App. Phys. 119 074307
Google Scholar
[15] 刘源, 黄友强, 赵英杰, 白功勋, 徐时清 2021 激光与光电子学进展 58 1516014
Google Scholar
Liu Y, Huang Y Q, Zhao Y J, Bai G X, Xu S Q 2021 Las. Opt. Prog. 58 1516014
Google Scholar
[16] Xu D, Chen W Y, Zeng M Q, Xue H F, Chen Y X, Sang X H, Xiao Y, Zhang T, Unocic R R, Xiao K, Fu L 2018 Angew. Chem. Int. Edit. 57 755
Google Scholar
[17] Li L S, Carter E A 2019 J. Am. Chem. Soc. 141 10451
Google Scholar
[18] Chiritescu C, Cahill D, Nguyen N, Johnson D, Bodapati A, Keblinski P, Zschack P 2007 Science 315 351
Google Scholar
[19] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Krist. Cryst. Mater. 220 567
Google Scholar
[20] Pfrommer B G, Côté M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233
Google Scholar
[21] Yang Z H, Wang X Y, Su X P 2012 J. Central South Univ. 19 1796
Google Scholar
[22] Luo L, Zhu H Q, Yin K H, Wu Z B, Xu F X, Gao T J, Yue Y X, Chen J J, Feng Q, Yang Y, Jia W Y 2024 ACS Ome. 10 1486
[23] Chauhan I, Kaur M, Singh K, Kumar A 2025 Adv. Semi. 1 169
[24] Du D X, Flannigan D J 2020 Struc. Dynam. 7 024103
Google Scholar
[25] Saraswat R, Kolos M, Verma R, Karlický F, Bhattacharya S 2024 J. Phys. Chem. C 128 8341
Google Scholar
[26] Basiuk V A, Henao-Holguín L V 2014 J. Comp. Theo. Nano. 11 1609
Google Scholar
[27] Tong Z, Dumitrică T, Frauenheim T 2021 Phys. Chem. Chem. Phy. 23 19627
Google Scholar
-
-
[1] Wu D, Mo Z H, Li X, Ren X Y, Shi Z F, Li X J, Zhang L, Yu X C, Peng H X, Zeng L H, Shan C X 2024 Appl. Phys. Rev. 11 041401
Google Scholar
[2] Zhu S H, Liu H, Wu J X, Mei J L, Zhang R, Liu Y, Chen Y, Cai X H 2025 ACS Appl. Mater. Int. 17 22060
Google Scholar
[3] Song T C, Jia Y, Yu G, Tang Y, Uzan A J, Zheng Z Y J, Guan H S, Onyszczak M, Singha R 2025 Phys. Rev. Res. 7 013224
Google Scholar
[4] Kim H, Yoo Y D 2025 Adv. Sci. 12 2500516
Google Scholar
[5] Yang H, Synnatschke K, Yoon J, Mirhosseini H, Hermes I M, Li X D, Neumann C, Morag A, Turchanin A, Kühne T D, Parkin S S P, Yang S, Nia A S, Feng X L 2025 ACS. Nano. 19 14309
Google Scholar
[6] Song T C, Jia Y Y, Yu G, Tang Y, Wang P J, Singha R, Gui X, Uzan-Narovlansky A J, Onyszczak M, Watanabe K, Taniguchi T, Cava R J, Schoop L M, Ong N P, Wang S F 2024 Nat. Phys. 20 269
Google Scholar
[7] Xu S Y, Ma Q, Shen H T, Fatemi V, Wu S F, Chang T R, Chang G Q, Mier Valdivia A M, Chan C K, Gibson Q D, Zhou J D, Liu Z, Watanabe K, Taniguchi T, Lin H, Cava R J, Fu L, Gedik N, Jarillo-Herrero P 2018 Nat. Phys. 14 900
Google Scholar
[8] Liu X, Zhao H Q, Chen Y, Liang X X, Liu S X, Huang Z Q, Wu Z P, Mao Y L, Shi X 2024 Mater. Today Chem. 38 102077
Google Scholar
[9] Liu Y W, Xiao C, Li Z, Xie Y 2016 Adv. Energy Mater. 6 1600436
Google Scholar
[10] Li J, Liang Y C, Li X X, Wei G M, Zhang Z H, Chen Q 2025 Mole. Cata. 579 115048
[11] Schuler B, Qiu D Y, Refaely-Abramson S, Kastl C, Chen C, Barja S, Koch R, Ogletree F, Aloni S 2019 Phys. Rev. Lett. 123 076801
Google Scholar
[12] Yelgel C, Yelgel Ö C 2024 Model. Sim. Mater. Sci. Eng. 32 085016
Google Scholar
[13] Wu D, Guo J W, Wang C Q, Ren X Y, Chen Y S, Lin P, Zeng L H, Shi Z F, Li X J, Shan C X, Jie J S 2021 ACS Nano 15 10119
Google Scholar
[14] Torun E, Sahin H, Cahangirov S, Rubio A, Peeters F M 2016 J. App. Phys. 119 074307
Google Scholar
[15] 刘源, 黄友强, 赵英杰, 白功勋, 徐时清 2021 激光与光电子学进展 58 1516014
Google Scholar
Liu Y, Huang Y Q, Zhao Y J, Bai G X, Xu S Q 2021 Las. Opt. Prog. 58 1516014
Google Scholar
[16] Xu D, Chen W Y, Zeng M Q, Xue H F, Chen Y X, Sang X H, Xiao Y, Zhang T, Unocic R R, Xiao K, Fu L 2018 Angew. Chem. Int. Edit. 57 755
Google Scholar
[17] Li L S, Carter E A 2019 J. Am. Chem. Soc. 141 10451
Google Scholar
[18] Chiritescu C, Cahill D, Nguyen N, Johnson D, Bodapati A, Keblinski P, Zschack P 2007 Science 315 351
Google Scholar
[19] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Krist. Cryst. Mater. 220 567
Google Scholar
[20] Pfrommer B G, Côté M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233
Google Scholar
[21] Yang Z H, Wang X Y, Su X P 2012 J. Central South Univ. 19 1796
Google Scholar
[22] Luo L, Zhu H Q, Yin K H, Wu Z B, Xu F X, Gao T J, Yue Y X, Chen J J, Feng Q, Yang Y, Jia W Y 2024 ACS Ome. 10 1486
[23] Chauhan I, Kaur M, Singh K, Kumar A 2025 Adv. Semi. 1 169
[24] Du D X, Flannigan D J 2020 Struc. Dynam. 7 024103
Google Scholar
[25] Saraswat R, Kolos M, Verma R, Karlický F, Bhattacharya S 2024 J. Phys. Chem. C 128 8341
Google Scholar
[26] Basiuk V A, Henao-Holguín L V 2014 J. Comp. Theo. Nano. 11 1609
Google Scholar
[27] Tong Z, Dumitrică T, Frauenheim T 2021 Phys. Chem. Chem. Phy. 23 19627
Google Scholar
Catalog
Metrics
- Abstract views: 347
- PDF Downloads: 7
- Cited By: 0









DownLoad: