Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photon blockade effect in artificial giant atom-coupled triple-cavity system

LUO Junhao MA Kangjie LIANG Yan SHENG Zhijun SUN Yiding TAN Lei

Citation:

Photon blockade effect in artificial giant atom-coupled triple-cavity system

LUO Junhao, MA Kangjie, LIANG Yan, SHENG Zhijun, SUN Yiding, TAN Lei
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The photon blockade effects in a system consisting of an artificial giant atom coupled with three cavities are investigated. By solving the Schrödinger equation, we obtain the steady-state probability amplitudes of the system and derive the analytical expressions for the equal-time second-order correlation function. Based on these analytical expressions, the optimal conditions for achieving the photon blockade under different driving conditions are derived in detail.We first examine the energy spectra and transition pathways for the single-photon and two-photon excitations in weakly driven cavity mode, and then investigate the statistical properties of photons. It is demonstrated that the optimal conventional photon blockade can be achieved by selecting appropriate driving detuning as characterized by the equal-time second-order correlation function of $g^{\left(2\right)}\left(0\right)\approx{10}^{-3.4} $. Remarkably, we observe that both cavities of the system exhibit robust photon blockade effects against the weak driving. It is also found that with the increase of the coupling strength between the artificial giant atom and cavities, the photon blockade phenomenon becomes more pronounced while maintaining its robustness to the weak driving. Furthermore, we consider the case of simultaneously driving both the artificial giant atom and cavity modes. The unique multi-point coupling characteristics of the artificial giant atom provide additional transition pathways for photons, thereby allowing us to use the resulting quantum interference to further enhance photon blockade. When the system satisfies the optimal parametric conditions for both the traditional and nontraditional blockade effects, one cavity exhibits exceptional photon blockade with $g^{\left(2\right)}\left(0\right)\approx{10}^{-6.5} $.This research greatly relaxes the stringent parameter requirements for the experimental realization of single-photon sources and provides a theoretical support for improving their quality, which is crucial for achieving high-performance single-photon sources.
  • 图 1  人工巨原子三腔耦合系统示意图, 其中人工巨原子与b腔被单色光驱动.

    Figure 1.  Schematic of a three-cavity system coupled to a giant atom, with both the atom and the b mode driven by monochromatic light.

    图 2  单光子阻塞产生的能级示意图. 当驱动场的频率$ \omega_{{\rm{d}}}=\omega_{0}\pm\sqrt{3}g $, 一个光子被系统共振吸收, 而第二个光子被阻塞

    Figure 2.  Energy-level diagram for single-photon blockade. When the driving field frequency $ \omega_{{\rm{d}}} = \omega_0 \pm \sqrt{3}g $, one photon is resonantly absorbed by the system, while the second photon is blockaded.

    图 3  (a), (b)分别为a, b腔等时二阶关联函数$ g^{(2)}(0) $随驱动失谐$ \varDelta_0/\kappa $的变化图; (c), (d)分别为a, b腔单光子占据概率$ P_1 $以及双光子占据概率$ P_2 $随驱动失谐$ \varDelta_0/\kappa $的变化图. 红色实线与蓝色虚线分别对应a腔与b腔, 共享参数为$ \varOmega/\kappa= 0.1 ,\;\gamma/\kappa= $$ 0.1 ,\; g/\kappa=25/\sqrt{3} $

    Figure 3.  (a), (b) Logarithmic plots of the equal-time second-order correlation function $ g^{(2)}(0) $ versus detuning $ \varDelta_{0} /\kappa $ for a, b mode; (c), (d) Logarithmic plots of the single-photon $ P_1 $ and two-photon $ P_2 $ occupation probabilities versus detuning $ \varDelta_0/\kappa $ for a, b mode. Red solid and blue dashed curves represent a and b modes, respectively. Parameters: $ \varOmega/\kappa=0.1, \ \gamma/\kappa=0.1, \ g/\kappa=25/\sqrt{3} $.

    图 4  (a), (b)分别为a, b腔等时二阶关联函数$ g^{(2)}(0) $随驱动强度$ \varOmega/\kappa $的变化图. 共享参数为$ \varDelta_{0}=\sqrt{3}g $, $ \gamma/\kappa=0.1 , $$ g /\kappa =25 /\sqrt{3} $

    Figure 4.  (a), (b) Logarithmic plots of the equal-time second-order correlation function $ g^{(2)}(0) $ versus $ \varOmega/\kappa $ for a, b mode. Parameters: $ \varDelta_{0}=\sqrt{3}g , \gamma/\kappa=0.1 $ and $ g /\kappa =25 /\sqrt{3} $.

    图 5  (a), (b)分别为a, b腔等时二阶关联函数$ g^{(2)}(0) $随驱动失谐$ \varDelta_0/\kappa $和耦合强度$ g/\kappa $的变化图. 共享参数为$ \varOmega/\kappa=0.1 , $$ \gamma/\kappa=0.1 $. 在上述图像中, 黑色虚线表示最佳常规阻塞条件$ \varDelta_0=\pm\sqrt{3}g $

    Figure 5.  (a), (b) Logarithmic plots of the equal-time second-order correlation function $ g^{(2)}(0) $ versus $ \varDelta_{0} /\kappa $ and $ g /\kappa $ for a, b mode. Parameters: $ \varOmega/\kappa=0.1 $ and $ \gamma/\kappa=0.1 $. Black dashed lines indicate optimal conditions $ \varDelta_0=\pm\sqrt{3}g $.

    图 6  (a), (b) a, b腔等时二阶关联函数随原子驱动强度ε与腔驱动强度Ω之比$ \varepsilon/\varOmega $的变化图; (c) b腔单光子占据概率$ |C_{g, 0, 1, 0}|^2 $随$ \varepsilon/\varOmega $的变化图; (d) b腔双光子占据概率$ |C_{g, 0, 2, 0}|^2 $随$ \varepsilon/\varOmega $的变化图. 其中用到$ \varDelta_0=\sqrt{3}g $, 其他参数与图3相同

    Figure 6.  (a), (b) Logarithmic plots of equal-time second-order correlation $ g^{(2)}(0) $ versus driving ratio $ \varepsilon/\varOmega $ for a, b mode; (c) Single-photon occupation probabilities $ |C_{g, 0, 1, 0}|^2 $ versus driving ratio $ \varepsilon/\varOmega $ for b mode; (d) Two-photon occupation probabilities $ |C_{g, 0, 2, 0}|^2 $ versus driving ratio $ \varepsilon/\varOmega $ for b mode. Parameters: $ \varDelta_0=\sqrt{3}g $ and other parameters are the same as Fig. 3.

    图 7  系统从态$ | g, 0, 0, 0 \rangle $到达态$ | g, 0, 2, 0 \rangle $有多条路径, 这些路径之间的量子干涉相消可以产生非常规光子阻塞效应. 在图中, 黑色实线代表系统的所有可能量子态. 黑色双向箭头实线表示在外部驱动下系统吸收光子的过程. 蓝色双向箭头虚线表示当系统中有单个光子时, 不同状态之间的跃迁路径. 红色双向箭头虚线表示当系统中有两个光子时, 不同状态之间的跃迁路径

    Figure 7.  Quantum destructive interference between multiple transition pathways from state $ | g, 0, 0, 0 \rangle $ to state $| g, 0, 2, 0 \rangle $generates unconventional photon blockade effect. In the diagram, the solid black line represents all possible quantum states of the system. The black solid double-headed arrow denotes the photon absorption process under external driving. The blue double-headed arrows dotted line indicate transition pathways between different states when the system contains a single photon. The red double-headed arrows dotted line represent transition pathways between different states when the system contains two photons.

    图 8  a腔等时二阶关联函数$ g_{{\rm{a}}}^{(2)}(0) $随耦合强度$ g /\kappa $和驱动强度比$ \varepsilon /\varOmega $的变化图, 其中$ \varDelta_{0}=\sqrt{3}g $且其余参数与图5相同

    Figure 8.  Logarithmic plot of the equal-time second-order correlation function $ g_{{\rm{a}}}^{(2)}(0) $ versus the coupling strength ratio $ \varepsilon/\varOmega $ and coupling strength $ g/\kappa $ for mode a, with $ \varDelta_0 = \sqrt{3}g $ and other parameters are the same as in Fig. 5.

    图 9  (a), (b)分别为a, b腔的等时二阶关联函数$ g^{(2)}(0) $随驱动失谐$ \varDelta_0/\kappa $的变化图. 其中$ g/\kappa=25/\sqrt{3} $, $ \varepsilon=\dfrac{\sqrt{3}}{3}\varOmega $, 其余参数与图5相同

    Figure 9.  (a), (b) Logarithmic plots of the equal-time second-order correlation function $ g^{(2)}(0) $ versus detuning $ \varDelta_0/\kappa $ for a, b mode, respectively. Parameters: $ g/\kappa=25/\sqrt{3} $, $ \varepsilon=\dfrac{\sqrt{3}}{3}\varOmega $ and other parameters are the same as in Fig. 5.

    Baidu
  • [1]

    Couteau C, Barz S, Durt T, Gerrits T, Huwer J, Prevedel R, Rarity J, Shields A, Weihs G 2023 Nat. Rev. Phys. 5 326Google Scholar

    [2]

    Couteau C, Barz S, Durt T, Gerrits T, Huwer J, Prevedel R, Rarity J, Shields A, Weihs G 2023 Nat. Rev. Phys. 5 354Google Scholar

    [3]

    Tomm N, Javadi A, Antoniadis N O, Najer D, Löbl M C, Korsch A R, Schott R, Valentin S R, Wieck A D, Ludwig A, Warburton R J 2021 Nat. Nanotechnol. 16 399Google Scholar

    [4]

    Senellart P, Solomon G, White A 2017 Nat. Nanotechnol. 12 1026Google Scholar

    [5]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46Google Scholar

    [6]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [7]

    Sangouard N, Simon C, De Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [8]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [9]

    Imamoğlu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467Google Scholar

    [10]

    Werner M J, Imamoğlu A 1999 Phys. Rev. A 61 011801Google Scholar

    [11]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87Google Scholar

    [12]

    Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A 97 043819Google Scholar

    [13]

    Brecha R J, Rice P R, Xiao M 1999 Phys. Rev. A 59 2392Google Scholar

    [14]

    Zhou Y H, Zhang X Y, Wu Q C, Ye B L, Zhang Z Q, Zou D D, Shen H Z, Yang C P 2020 Phys. Rev. A 102 033713Google Scholar

    [15]

    Shen H Z, Zhou Y H, Yi X X 2014 Phys. Rev. A 90 023849Google Scholar

    [16]

    Majumdar A, Gerace D 2013 Phys. Rev. B 87 235319Google Scholar

    [17]

    Sun J Y, Shen H Z 2023 Phys. Rev. A 107 043715Google Scholar

    [18]

    Liew T C H, Savona V 2010 Phys. Rev. Lett. 104 183601Google Scholar

    [19]

    Bamba M, Imamoğlu A, Carusotto I, Ciuti C 2011 Phys. Rev. A 83 021802Google Scholar

    [20]

    Sarma B, Sarma A K 2017 Phys. Rev. A 96 053827Google Scholar

    [21]

    Shen H Z, Shang C, Zhou Y H, Yi X X 2018 Phys. Rev. A 98 023856Google Scholar

    [22]

    Lemonde M A, Didier N, Clerk A A 2014 Phys. Rev. A 90 063824Google Scholar

    [23]

    Snijders H J, Frey J A, Norman J, Flayac H, Savona V, Gossard A C, Bowers J E, van Exter M P, Bouwmeester D, Löffler W 2018 Phys. Rev. Lett. 121 043601Google Scholar

    [24]

    Vaneph C, Morvan A, Aiello G, Féchant M, Aprili M, Gabelli J, Estève J 2018 Phys. Rev. Lett. 121 043602Google Scholar

    [25]

    Carusotto I, Ciuti C 2013 Rev. Mod. Phys. 85 299Google Scholar

    [26]

    Shen H Z, Zhou Y H, Yi X X 2015 Phys. Rev. A 91 063808Google Scholar

    [27]

    Zhou Y H, Shen H Z, Shao X Q, Yi X X 2016 Opt. Express 24 17332Google Scholar

    [28]

    Zheng C M, Zhang W, Wang D Y, Han X, Wang H F 2023 New J. Phys. 25 043030Google Scholar

    [29]

    Chen M, Tang J, Tang L, Wu H, Xia K 2022 Phys. Rev. Res. 4 033083Google Scholar

    [30]

    Li M, Zhang Y L, Wu S H, Dong C H, Zou X B, Guo G C, Zou C L 2022 Phys. Rev. Lett. 129 043601Google Scholar

    [31]

    Lu Y W, Liu J F, Li R H, Wu Y X, Tan H S, Li Y Y 2022 New J. Phys. 24 053029Google Scholar

    [32]

    Lin H Y, Wang X Q, Yao Z H, Zou D D 2020 Opt. Express 28 17643Google Scholar

    [33]

    张志强 2025 74 164204Google Scholar

    Zhang Z Q 2025 Acta Phys. Sin. 74 164204Google Scholar

    [34]

    李宏, 张斯淇, 郭明, 李美萱, 宋立军 2019 68 124203Google Scholar

    Li H, Zhang S Q, Guo M, Li M X, Song L J 2019 Acta Phys. Sin. 68 124203Google Scholar

    [35]

    Hou R, Zhang W, Han X, Wang H F, Zhang S 2025 Sci. Rep. 15 5145Google Scholar

    [36]

    Qiao X, Yao Z, Yang H 2024 Phys. Rev. A 110 053702Google Scholar

    [37]

    Fan X H, Zhang Y N, Yu J P, Liu M Y, He W D, Li H C, Xiong W 2024 Adv. Quantum Technol. 7 2400043Google Scholar

    [38]

    Li H J, Fan L B, Ma S, Liao J Q, Shu C C 2024 Phys. Rev. A 110 043707Google Scholar

    [39]

    Zhou Y H, Liu T, Su Q P, Zhang X Y, Wu Q C, Chen D X, Shi Z C, Shen H Z, Yang C P 2025 Phys. Rev. Lett. 134 183601Google Scholar

    [40]

    Hamsen C, Tolazzi K N, Wilk T, Rempe G 2017 Phys. Rev. Lett. 118 133604Google Scholar

    [41]

    Huang R, Miranowicz A, Liao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601Google Scholar

    [42]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press). P134

    [43]

    Rabl P 2011 Phys. Rev. Lett. 107 063601Google Scholar

    [44]

    Redchenko E S, Zens M, Žemlička M, Peruzzo M, Hassani F, Sett R, Zieliński P, Dhar H S, Krimer D O, Rotter S, Fink J M 2025 Phys. Rev. Lett. 134 063601Google Scholar

    [45]

    Ma K J, Liu J, Cai Y, Tan L 2025 Physica Scripta 100 025109Google Scholar

    [46]

    Stewart M, Kwon J, Lanuza A, Schneble D 2020 Phys. Rev. Res. 2 043307Google Scholar

    [47]

    Krinner L, Stewart M, Pazmiño A, Kwon J, Schneble D 2018 Nature 559 589Google Scholar

    [48]

    Hood J D, Goban A, Asenjo-Garcia A, Lu M, Yu S P, Chang D E, Kimble H 2016 Proc. Natl. Acad. Sci. 113 10507Google Scholar

    [49]

    Scigliuzzo M, Calajò G, Ciccarello F, Perez Lozano D, Bengtsson A, Scarlino P, Wallraff A, Chang D, Delsing P, Gasparinetti S 2022 Phys. Rev. X 12 031036

    [50]

    Ferreira V S, Banker J, Sipahigil A, Matheny M H, Keller A J, Kim E, Mirhosseini M, Painter O 2021 Phys. Rev. X 11 041043

  • [1] ZHU Zhonghua, CHEN Keke, ZHANG Yuqing, FU Xiangyun, PENG Zhaohui, LU Zhenyan, CHAI Yifeng, XIONG Zuzhou, TAN Lei. Single-photon scattering in a two-level giant atom-dual waveguide coupled system based on local coupling phase regulation. Acta Physica Sinica, doi: 10.7498/aps.74.20250505
    [2] ZHANG Zhiqiang. Photon blockade effect from synergistic optical parametric amplification and driving force in Kerr-medium single-mode cavity. Acta Physica Sinica, doi: 10.7498/aps.74.20250712
    [3] Zhu Ming-Jie, Zhao Wei, Wang Zhi-Hai. Photonic shielding in giant resonator system. Acta Physica Sinica, doi: 10.7498/aps.72.20230049
    [4] Du Meng-Yao, Qiu Zhi-Yong. Spin blocking effect at Ni/Pt heterojunction. Acta Physica Sinica, doi: 10.7498/aps.72.20222288
    [5] Xu Yao-Kun, Sun Shi-Hai, Zeng Yao-Yuan, Yang Jun-Gang, Sheng Wei-Dong, Liu Wei-Tao. General theory of quantum holography based on two-photon Interference. Acta Physica Sinica, doi: 10.7498/aps.72.20231242
    [6] Li Rui-Hao, Liu Jun-Yang, Hong Wen-Jing. Regulation strategies based on quantum interference in electrical transport of single-molecule devices. Acta Physica Sinica, doi: 10.7498/aps.71.20211819
    [7] Liu Xue-Ying, Cheng Shu-Jie, Gao Xian-Long. The photon blockade effect of a complete Buck-Sukumar model. Acta Physica Sinica, doi: 10.7498/aps.70.20220238
    [8] Li Yu-Ang, Wu Di, Wang Dong-Li, Hu Hao, Pan Yi. Investigation of artificial quantum structures constructed by atom manipulation. Acta Physica Sinica, doi: 10.7498/aps.70.20201501
    [9] Dai Yu-Fei, Chen Yao-Tong, Wang Lan, Yin Kai, Zhang Yan. Controllable quantum interference and photon transport in three-mode closed-loop cavity-atom system. Acta Physica Sinica, doi: 10.7498/aps.69.20200184
    [10] Zou Cheng-Yi, Wu Shao-Quan, Zhao Guo-Ping. Mageto-transport properties of serial double quantum dots in the spin blockade regime. Acta Physica Sinica, doi: 10.7498/aps.62.017201
    [11] Sun Jiang, Sun Juan, Wang Ying, Su Hong-Xin, Cao Jin-Feng. The three-photon resonant nondegenerate six-wave mixing via quantum interference in the middle level. Acta Physica Sinica, doi: 10.7498/aps.61.114213
    [12] Han Kui, Wang Zi-Yu, Shen Xiao-Peng, Wu Qiong-Hua, Tong Xing, Tang Gang, Wu Yu-Xi. Mach-Zehnder interferometer designed based on self-collimating beams and photonic band gap in photonic crystals. Acta Physica Sinica, doi: 10.7498/aps.60.044212
    [13] Li Yuan, Dou Xiu-Ming, Chang Xiu-Ying, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Single-photon interference based on a single InAs quantum dot. Acta Physica Sinica, doi: 10.7498/aps.60.037809
    [14] Li Yue-Ke, Zhang Gui-Ming, Gao Yun-Feng. Quantum interference in the cavity field spectra of nondegenerate two-photon Jaynes-Cummings model. Acta Physica Sinica, doi: 10.7498/aps.59.1786
    [15] Yao Zhi-Xin, Zhong Jian-Wei, Mao Bang-Ning, Chen Gang, Pan Bai-Liang. Quantum description of interference effect with two holes. Acta Physica Sinica, doi: 10.7498/aps.56.3185
    [16] Chen Jun, Liu Zheng-Dong, Zheng Jun, Fang Hui-Juan. Effect of vacuum-induced coherence in a four-level atomic system via quantum interference. Acta Physica Sinica, doi: 10.7498/aps.56.6441
    [17] Sun Jiang, Zuo Zhan-Chun, Mi Xin, Yu Zu-He, Wu Ling-An, Fu Pan-Ming. Two-photon resonant nondegenerate four-wave mixing via quantum interference. Acta Physica Sinica, doi: 10.7498/aps.54.149
    [18] Li Yong-Fang, Sun Jian-Feng. Ultra-narrow electromagnetically induced transparency and inversionless gain in a ladder-four-level system. Acta Physica Sinica, doi: 10.7498/aps.52.547
    [19] WANG JI-SUO, FENG JIAN, ZHAN MING-SHENG. COULOMB BLOCKADE AND QUANTUM EFFECTS OF CHARGE IN A NON-DISSIPATIVE MESOSCOPIC INDUCTANCE-COUPLING CIRCUITS. Acta Physica Sinica, doi: 10.7498/aps.50.299
    [20] JIN WEI-GUO, ZHAO GUO-QING, SHAO QI-YUN, REN YUE-HUA, WU XIANG-JIAN, ZHOU ZHU-YING. THE LIFETIME MEASUREMENT OF THE 28Si COMPOUND STATE OF 13.095 MeV BY THE BLOCKING EFFECT. Acta Physica Sinica, doi: 10.7498/aps.36.819
Metrics
  • Abstract views:  419
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  25 July 2025
  • Accepted Date:  20 August 2025
  • Available Online:  05 September 2025
  • /

    返回文章
    返回
    Baidu
    map