Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dissociation of fluoromethane trication induced by highly charged ion collisions

TAN Xu FANG Fan ZHANG Yu SUN Dehao WU Yijiao YIN Hao MENG Tianming TU Bingsheng WEI Baoren

Citation:

Dissociation of fluoromethane trication induced by highly charged ion collisions

TAN Xu, FANG Fan, ZHANG Yu, SUN Dehao, WU Yijiao, YIN Hao, MENG Tianming, TU Bingsheng, WEI Baoren
cstr: 32037.14.aps.74.20251099
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Investigating molecular fragmentation mechanisms and the kinetic energy distributions of fragments can offer crucial insights into their roles in plasma physics, radiation-induced damage in biological tissues, and interstellar chemistry. In this study, we conduct the experiments on collision between 3 keV/u ${\rm Ar}^{8+} $ ions and CH3F molecules by using a cold target recoil ion momentum spectrometer (COLTRIMS).We focus on the three-body fragmentation channel H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ resulting from C—F and C—H bond cleavage in CH3F3+ ions, and measure the three-dimensional momentum vectors of all fragment ions. The fragmentation mechanism involved is analyzed using ion-ion kinetic energy correlation spectra, Newton diagrams, Dalitz plots, and other correlation spectra.Our results reveal two different dissociation mechanisms for the H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ channel, i.e. concerted fragmentation and sequential fragmentation, with the former one being dominant. In the sequential fragmentation process, H+ and the intermediate CH2F2+ are firstly formed, followed by further fragmentation of the intermediates into $ {\mathrm{C}\mathrm{H}}_{2}^{+} $ and F+. No sequential pathways involving HF2+ or $ {\mathrm{C}\mathrm{H}}_{3}^{2+} $ intermediates are identified. Furthermore, we observe two types of concerted fragmentation processes with different dynamical characteristics, suggesting that hydrogen atoms in CH3F3+ may occupy different chemical environments. This phenomenon can originate from either molecular isomerization producing different structural geometries or the Jahn-Teller effect leading to inequivalent C—H bonds. This study reveals the three-body dissociation dynamics of CH3F3+ induced by highly charged ion collisions, highlighting the significant role of the Jahn-Teller effect or molecular isomerization in the ionic dissociation of polyatomic molecules.
      Corresponding author: ZHANG Yu, zyclay@outlook.com ; WEI Baoren, brwei@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12374227, 12104185), the National Key R&D Program of China (Grant No. 2022YFA1602504), and the Young Sci-Tech Talent Special Program of Jiaxing, China (Grant No. 2024AY40007).
    [1]

    Thissen R, Witasse O, Dutuit O, Wedlund C S, Gronoff G, Lilensten J 2011 Phys. Chem. Chem. Phys. 13 18264Google Scholar

    [2]

    Reiter D, Janev R K 2010 Contrib. Plasma Phys. 50 986Google Scholar

    [3]

    Wheatley A K, Juno J A, Wang J J, Selva K J, Reynaldi A, Tan H X, Lee W S, Wragg K M, Kelly H G, Esterbauer R, Davis S K, Kent H E, Mordant F L, Schlub T E, Gordon D L, Khoury D S, Subbarao K, Cromer D, Gordon T P, Chung A W, Davenport M P, Kent S J 2021 Nat. Commun. 12 1162Google Scholar

    [4]

    Ren X G, Wang E L, Skitnevskaya A D, Trofimov A B, Gokhberg K, Dorn A 2018 Nat. Phys. 14 1062Google Scholar

    [5]

    Price S D, Roithová J 2011 Phys. Chem. Chem. Phys. 13 18251Google Scholar

    [6]

    Matsika S, Spanner M, Kotur M, Weinacht T C 2013 J. Phys. Chem. A 117 12796Google Scholar

    [7]

    Ren B H, Ma P F, Zhang Y, Wei L, Han J, Xia Z H, Wang J R, Meng T M, Yu W D, Zou Y M, Yang C L, Wei B R 2022 Phys. Rev. A 106 012805Google Scholar

    [8]

    Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett. 11 3129Google Scholar

    [9]

    张紫琪, 闫顺成, 陶琛玉, 余璇, 张少锋, 马新文 2025 74 063401Google Scholar

    Zhang Z Q, Yan S C, Tao C Y, Yu X, Zhang S F, Ma X W 2025 Acta Phys. Sin. 74 063401Google Scholar

    [10]

    Das R, Bhojani A K, Madhusudhan P, Nimma V, Bhardwaj P, Singh D K, Kushawaha R K 2025 J. Phys. B: At. Mol. Opt. Phys. 58 045603Google Scholar

    [11]

    Wang E L, Shan X, Chen L, Pfeifer T, Chen X J, Ren X G, Dorn A 2020 J. Phys. Chem. A 124 2785Google Scholar

    [12]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703Google Scholar

    [13]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303Google Scholar

    [14]

    Wang B, Han J, Zhu X L, Wei L, Ren B H, Zhang Y, Yu W D, Yan S C, Ma X W, Zou Y M, Chen L, Wei B R 2021 Phys. Rev. A 103 042810Google Scholar

    [15]

    Rajput J, Severt T, Berry B, Jochim B, Feizollah P, Kaderiya B, Zohrabi M, Ablikim U, Ziaee F, Raju K P, Rolles D, Rudenko A, Carnes K D, Esry B D, Ben-Itzhak I 2018 Phys. Rev. Lett. 120 103001Google Scholar

    [16]

    Burger C, Kling N G, Siemering R, Alnaser A S, Bergues B, Azzeer A M, Moshammer R, de Vivie-Riedle R, Kübel M, Kling M F 2016 Faraday Discuss. 194 495Google Scholar

    [17]

    Hishikawa A, Matsuda A, Takahashi E J, Fushitani M 2008 J. Chem. Phys. 128 084302Google Scholar

    [18]

    Müller H S P, Schlöder F, Stutzki J, Winnewisser G 2005 J. Mol. Struct. 742 215Google Scholar

    [19]

    Das R, Pandey D K, Soumyashree S, Madhusudhan P, Nimma V, Bhardwaj P, Muhammed S K M, Singh D K, Kushawaha R K 2022 Phys. Chem. Chem. Phys. 24 18306Google Scholar

    [20]

    Townsend D, Lahankar S A, Lee S K, Chambreau S D, Suits A G, Zhang X, Rheinecker J, Harding L B, Bowman J M 2004 Science 306 1158Google Scholar

    [21]

    Nakai K, Kato T, Kono H, Yamanouchi K 2013 J. Chem. Phys. 139 181103Google Scholar

    [22]

    Castrovilli M C, Trabattoni A, Bolognesi P, O’Keeffe P, Avaldi L, Nisoli M, Calegari F, Cireasa R 2018 J. Phys. Chem. Lett. 9 6012Google Scholar

    [23]

    Ma P, Wang C C, Li X K, Yu X T, Tian X, Hu W H, Yu J Q, Luo S Z, Ding D J 2017 J. Chem. Phys. 146 244305Google Scholar

    [24]

    Kokkonen E, Vapa M, Bučar K, Jänkälä K, Cao W, Žitnik M, Huttula M 2016 Phys. Rev. A 94 033409Google Scholar

    [25]

    Masuoka T, Koyano I 1991 J. Chem. Phys. 95 909Google Scholar

    [26]

    Ma P F, Wang J R, Zhang Z X, Meng T M, Xia Z H, Ren B H, Wei L, Yao K, Xiao J, Zou Y M, Tu B S, Wei B R 2023 Nucl. Sci. Tech. 34 156Google Scholar

    [27]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Dörner R 2010 Phys. Rev. Lett. 104 103201Google Scholar

    [28]

    Walsh N, Sankari A, Laksman J, Andersson T, Oghbaie S, Afaneh F, Månsson E P, Gisselbrecht M, Sorensen S L 2015 Phys. Chem. Chem. Phys. 17 18944Google Scholar

    [29]

    Zhou J Q, Li Y T, Wang Y Y, Jia S K, Xue X R, Yang T, Zhang Z, Dorn A, Ren X G 2021 Phys. Rev. A 104 032807Google Scholar

    [30]

    Ma C, Xu S Y, Zhao D M, Guo D L, Yan S C, Feng W T, Zhu X L, Ma X W 2020 Phys. Rev. A 101 052701Google Scholar

    [31]

    Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708Google Scholar

    [32]

    Pearson R G 1975 Proc. Nat. Acad. Sci. USA 72 2104Google Scholar

    [33]

    Bersuker I B 2001 Chem. Rev. 101 1067Google Scholar

    [34]

    Bersuker I B 2021 Chem. Rev. 121 1463Google Scholar

    [35]

    Wörner H J, Merkt F 2009 Angew. Chem. Int. Ed. 48 6404Google Scholar

    [36]

    Jahn H A, Teller E 1937 Proc. R. Soc. London Ser. A 161 220Google Scholar

    [37]

    Matselyukh D, Svoboda V, Wörner H J 2025 Nat. Commun. 16 6540Google Scholar

    [38]

    Wang J G, Dong B W, Zhang M, Deng Y K, Jian X P, Li Z, Liu Y Q 2024 J. Am. Chem. Soc. 146 10443Google Scholar

    [39]

    Kugel' K I, Khomskiĭ D I 1982 Sov. Phys. Usp. 25 231Google Scholar

    [40]

    O’Brien M C, Chancey C C 1993 Am. J. Phys. 61 688Google Scholar

    [41]

    Zhou J Q, Wu L, Belina M, Skitnevskaya A D, Jia S K, Xue X R, Hao X T, Zeng Q R, Ma Q B, Zhao Y T, Li X K, He L H, Luo S Z, Zhang D D, Wang C C, Trofimov A B, Slavíček P, Ding D J, Ren X G 2025 Nat. Commun. 16 5838Google Scholar

    [42]

    Zhao X N, Zhang X Y, Liu H, Ma P, Li X K, Wang C C, Luo S Z, Ding D J 2025 Phys. Rev. A 111 053106Google Scholar

    [43]

    Zhou J Q, Belina M, Jia S K, Xue X R, Hao X T, Ren X G, Slavíček P 2022 J. Phys. Chem. Lett. 13 10603Google Scholar

    [44]

    Yuan H, Gao Y, Yang B, Gu S F, Lin H, Guo D L, Liu J L, Zhang S F, Ma X W, Xu S Y 2024 Phys. Rev. Lett. 133 193002Google Scholar

    [45]

    Duflot D, Robbe J M, Flament J P 1995 J. Chem. Phys. 103 10571Google Scholar

    [46]

    Matsubara T 2023 J. Phys. Chem. A 127 4801Google Scholar

  • 图 1  CH3F3+离子解离的三离子TOF符合谱

    Figure 1.  Coincidence TOF map of CH3F3+ dissociation involving three ionic fragments.

    图 2  H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+通道的Newton图

    Figure 2.  Newton diagrams of H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ channel.

    图 3  $ {\mathrm{C}\mathrm{H}}_{2}^{+} $离子和F+离子的动能关联谱

    Figure 3.  Kinetic energy correlation spectra of $ {\mathrm{C}\mathrm{H}}_{2}^{+} $ ions and F+ ions.

    图 4  H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+通道的Dalitz图, 其中(a), (b), (c)分别为图3中A, B和C区域中的碎裂事件

    Figure 4.  Dalitz diagrams of H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ channel, (a), (b), (c) corresponding to fragmentation events in regions A, B, and C of Fig. 3, respectively.

    图 5  H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+通道所有事件以及图3中不同区域事件的KER谱

    Figure 5.  KER spectra for all events of H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ channel and events in different regions of Fig. 3.

    图 6  $ {\mathrm{K}\mathrm{E}\mathrm{R}}_{{\mathrm{H}\mathrm{F}}^{2+}} $和$ {\theta }_{{\mathrm{C}\mathrm{H}}_{2}^{+}, {\mathrm{H}}^{+}} $的关联谱

    Figure 6.  Correlation spectrum of $ {\mathrm{K}\mathrm{E}\mathrm{R}}_{{\mathrm{H}\mathrm{F}}^{2+}} $and $ {\theta }_{{\mathrm{C}\mathrm{H}}_{2}^{+}, {\mathrm{H}}^{+}} $.

    Baidu
  • [1]

    Thissen R, Witasse O, Dutuit O, Wedlund C S, Gronoff G, Lilensten J 2011 Phys. Chem. Chem. Phys. 13 18264Google Scholar

    [2]

    Reiter D, Janev R K 2010 Contrib. Plasma Phys. 50 986Google Scholar

    [3]

    Wheatley A K, Juno J A, Wang J J, Selva K J, Reynaldi A, Tan H X, Lee W S, Wragg K M, Kelly H G, Esterbauer R, Davis S K, Kent H E, Mordant F L, Schlub T E, Gordon D L, Khoury D S, Subbarao K, Cromer D, Gordon T P, Chung A W, Davenport M P, Kent S J 2021 Nat. Commun. 12 1162Google Scholar

    [4]

    Ren X G, Wang E L, Skitnevskaya A D, Trofimov A B, Gokhberg K, Dorn A 2018 Nat. Phys. 14 1062Google Scholar

    [5]

    Price S D, Roithová J 2011 Phys. Chem. Chem. Phys. 13 18251Google Scholar

    [6]

    Matsika S, Spanner M, Kotur M, Weinacht T C 2013 J. Phys. Chem. A 117 12796Google Scholar

    [7]

    Ren B H, Ma P F, Zhang Y, Wei L, Han J, Xia Z H, Wang J R, Meng T M, Yu W D, Zou Y M, Yang C L, Wei B R 2022 Phys. Rev. A 106 012805Google Scholar

    [8]

    Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett. 11 3129Google Scholar

    [9]

    张紫琪, 闫顺成, 陶琛玉, 余璇, 张少锋, 马新文 2025 74 063401Google Scholar

    Zhang Z Q, Yan S C, Tao C Y, Yu X, Zhang S F, Ma X W 2025 Acta Phys. Sin. 74 063401Google Scholar

    [10]

    Das R, Bhojani A K, Madhusudhan P, Nimma V, Bhardwaj P, Singh D K, Kushawaha R K 2025 J. Phys. B: At. Mol. Opt. Phys. 58 045603Google Scholar

    [11]

    Wang E L, Shan X, Chen L, Pfeifer T, Chen X J, Ren X G, Dorn A 2020 J. Phys. Chem. A 124 2785Google Scholar

    [12]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703Google Scholar

    [13]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303Google Scholar

    [14]

    Wang B, Han J, Zhu X L, Wei L, Ren B H, Zhang Y, Yu W D, Yan S C, Ma X W, Zou Y M, Chen L, Wei B R 2021 Phys. Rev. A 103 042810Google Scholar

    [15]

    Rajput J, Severt T, Berry B, Jochim B, Feizollah P, Kaderiya B, Zohrabi M, Ablikim U, Ziaee F, Raju K P, Rolles D, Rudenko A, Carnes K D, Esry B D, Ben-Itzhak I 2018 Phys. Rev. Lett. 120 103001Google Scholar

    [16]

    Burger C, Kling N G, Siemering R, Alnaser A S, Bergues B, Azzeer A M, Moshammer R, de Vivie-Riedle R, Kübel M, Kling M F 2016 Faraday Discuss. 194 495Google Scholar

    [17]

    Hishikawa A, Matsuda A, Takahashi E J, Fushitani M 2008 J. Chem. Phys. 128 084302Google Scholar

    [18]

    Müller H S P, Schlöder F, Stutzki J, Winnewisser G 2005 J. Mol. Struct. 742 215Google Scholar

    [19]

    Das R, Pandey D K, Soumyashree S, Madhusudhan P, Nimma V, Bhardwaj P, Muhammed S K M, Singh D K, Kushawaha R K 2022 Phys. Chem. Chem. Phys. 24 18306Google Scholar

    [20]

    Townsend D, Lahankar S A, Lee S K, Chambreau S D, Suits A G, Zhang X, Rheinecker J, Harding L B, Bowman J M 2004 Science 306 1158Google Scholar

    [21]

    Nakai K, Kato T, Kono H, Yamanouchi K 2013 J. Chem. Phys. 139 181103Google Scholar

    [22]

    Castrovilli M C, Trabattoni A, Bolognesi P, O’Keeffe P, Avaldi L, Nisoli M, Calegari F, Cireasa R 2018 J. Phys. Chem. Lett. 9 6012Google Scholar

    [23]

    Ma P, Wang C C, Li X K, Yu X T, Tian X, Hu W H, Yu J Q, Luo S Z, Ding D J 2017 J. Chem. Phys. 146 244305Google Scholar

    [24]

    Kokkonen E, Vapa M, Bučar K, Jänkälä K, Cao W, Žitnik M, Huttula M 2016 Phys. Rev. A 94 033409Google Scholar

    [25]

    Masuoka T, Koyano I 1991 J. Chem. Phys. 95 909Google Scholar

    [26]

    Ma P F, Wang J R, Zhang Z X, Meng T M, Xia Z H, Ren B H, Wei L, Yao K, Xiao J, Zou Y M, Tu B S, Wei B R 2023 Nucl. Sci. Tech. 34 156Google Scholar

    [27]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Dörner R 2010 Phys. Rev. Lett. 104 103201Google Scholar

    [28]

    Walsh N, Sankari A, Laksman J, Andersson T, Oghbaie S, Afaneh F, Månsson E P, Gisselbrecht M, Sorensen S L 2015 Phys. Chem. Chem. Phys. 17 18944Google Scholar

    [29]

    Zhou J Q, Li Y T, Wang Y Y, Jia S K, Xue X R, Yang T, Zhang Z, Dorn A, Ren X G 2021 Phys. Rev. A 104 032807Google Scholar

    [30]

    Ma C, Xu S Y, Zhao D M, Guo D L, Yan S C, Feng W T, Zhu X L, Ma X W 2020 Phys. Rev. A 101 052701Google Scholar

    [31]

    Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708Google Scholar

    [32]

    Pearson R G 1975 Proc. Nat. Acad. Sci. USA 72 2104Google Scholar

    [33]

    Bersuker I B 2001 Chem. Rev. 101 1067Google Scholar

    [34]

    Bersuker I B 2021 Chem. Rev. 121 1463Google Scholar

    [35]

    Wörner H J, Merkt F 2009 Angew. Chem. Int. Ed. 48 6404Google Scholar

    [36]

    Jahn H A, Teller E 1937 Proc. R. Soc. London Ser. A 161 220Google Scholar

    [37]

    Matselyukh D, Svoboda V, Wörner H J 2025 Nat. Commun. 16 6540Google Scholar

    [38]

    Wang J G, Dong B W, Zhang M, Deng Y K, Jian X P, Li Z, Liu Y Q 2024 J. Am. Chem. Soc. 146 10443Google Scholar

    [39]

    Kugel' K I, Khomskiĭ D I 1982 Sov. Phys. Usp. 25 231Google Scholar

    [40]

    O’Brien M C, Chancey C C 1993 Am. J. Phys. 61 688Google Scholar

    [41]

    Zhou J Q, Wu L, Belina M, Skitnevskaya A D, Jia S K, Xue X R, Hao X T, Zeng Q R, Ma Q B, Zhao Y T, Li X K, He L H, Luo S Z, Zhang D D, Wang C C, Trofimov A B, Slavíček P, Ding D J, Ren X G 2025 Nat. Commun. 16 5838Google Scholar

    [42]

    Zhao X N, Zhang X Y, Liu H, Ma P, Li X K, Wang C C, Luo S Z, Ding D J 2025 Phys. Rev. A 111 053106Google Scholar

    [43]

    Zhou J Q, Belina M, Jia S K, Xue X R, Hao X T, Ren X G, Slavíček P 2022 J. Phys. Chem. Lett. 13 10603Google Scholar

    [44]

    Yuan H, Gao Y, Yang B, Gu S F, Lin H, Guo D L, Liu J L, Zhang S F, Ma X W, Xu S Y 2024 Phys. Rev. Lett. 133 193002Google Scholar

    [45]

    Duflot D, Robbe J M, Flament J P 1995 J. Chem. Phys. 103 10571Google Scholar

    [46]

    Matsubara T 2023 J. Phys. Chem. A 127 4801Google Scholar

  • [1] YIN Guiqin, ZHANG Leilei, TUO Sheng. Discharge characteristics of dual-frequency magnetized capacitively coupled Ar/CH4 plasma. Acta Physica Sinica, 2025, 74(14): 145201. doi: 10.7498/aps.74.20250244
    [2] ZHANG Ziqi, YAN Shuncheng, TAO Chenyu, YU Xuan, ZHANG Shaofeng, MA Xinwen. Dissociation mechanism of ethane dication via three-body fragmentation. Acta Physica Sinica, 2025, 74(6): 063401. doi: 10.7498/aps.74.20250008
    [3] Luo Yan, Yu Xuan, Lei Jian-Ting, Tao Chen-Yu, Zhang Shao-Feng, Zhu Xiao-Long, Ma Xin-Wen, Yan Shun-Cheng, Zhao Xiao-Hui. Fragmentation mechanism of methane dehydrogenation channel induced by extreme ultraviolet and high charge ions. Acta Physica Sinica, 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [4] Wu Yi-Jiao, Meng Tian-Ming, Zhang Xian-Wen, Tan Xu, Ma Pu-Fang, Yin Hao, Ren Bai-Hui, Tu Bing-Sheng, Zhang Rui-Tian, Xiao Jun, Ma Xin-Wen, Zou Ya-Ming, Wei Bao-Ren. Experimental measurement of state selective double electron capture in collision between 1.4–20 keV/u Ar8+ with He. Acta Physica Sinica, 2024, 73(24): 240701. doi: 10.7498/aps.73.20241290
    [5] Cao Shu-Li, Li Shou-Zhe, Niu Yu-Long, Li Rong-Yi, Zhu Hai-Long. Experimental study on microwave plasma discharge and combustion of premixed methane and air at atmospheric pressure. Acta Physica Sinica, 2023, 72(15): 155201. doi: 10.7498/aps.72.20230676
    [6] Zhong Wang-Shen, Chen Ye-Li, Qian Mu-Yang, Liu San-Qiu, Zhang Jia-Liang, Wang De-Zhen. Zero-dimensional numerical simulation of dry reforming of methane in atmospheric pressure non-equilibrium plasma. Acta Physica Sinica, 2021, 70(7): 075206. doi: 10.7498/aps.70.20201700
    [7] Wu Yong-Gang, Liu Jia-Xing, Liu Hong-Ling, Xu Mei, Linghu Rong-Feng. Spectrum and dissociation properties of fluoro trichloro methane molecule in radiational field. Acta Physica Sinica, 2019, 68(6): 063102. doi: 10.7498/aps.68.20182121
    [8] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [9] Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi. Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique. Acta Physica Sinica, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [10] Shen Li-Li, Yan Shun-Cheng, Ma Xin-Wen, Zhu Xiao-Long, Zhang Shao-Feng, Feng Wen-Tian, Zhang Peng-Ju, Guo Da-Long, Gao Yong, Hai Bang, Zhang Min, Zhao Dong-Mei. Three-body fragmentation dynamics of OCS3+ induced by intermediate energy Ne4+ ion impact. Acta Physica Sinica, 2018, 67(4): 043401. doi: 10.7498/aps.67.20172163
    [11] Liu Yu-Zhu, Chen Yun-Yun, Zheng Gai-Ge, Jin Feng, Gregor Knopp. Multiphoton ionization and dissociation dynamics of Freon-113 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [12] Zhou Lei, Li Xiao-Ya, Zhu Wen-Jun, Wang Jia-Xiang, Tang Chang-Jian. Plasma recoil induced by laser radiated solid target. Acta Physica Sinica, 2016, 65(8): 085201. doi: 10.7498/aps.65.085201
    [13] Lin Kang, Gong Xiao-Chun, Song Qi-Ying, Ji Qin-Ying, Ma Jun-Yang, Zhang Wen-Bin, Lu Pei-Fen, Zeng He-Ping, Wu Jian. Directional bond breaking of CO molecules by counter-rotating circularly polarized two-color laser fields. Acta Physica Sinica, 2016, 65(22): 224209. doi: 10.7498/aps.65.224209
    [14] J. Ullrich, A. Dorn, Ma Xin-Wen, Xu Shen-Yue, Ren Xue-Guang, T. Pflüger. Dissociative ionization of methane by 54 eV electron impact. Acta Physica Sinica, 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [15] Zhu Xiao-Long, Ma Xin-Wen, Li Bin, Feng Wen-Tian, Zhang Shao-Feng, Liu Hui-Ping, Qian Dong-Bin, Zhang Da-Cheng. Experimental investigation of transfer ionization mechanism in slow He2+-He collisions. Acta Physica Sinica, 2010, 59(1): 620-624. doi: 10.7498/aps.59.620
    [16] Zhu Xiao-Long, Ma Xin-Wen, Li Bin, Liu Hui-Ping, Chen Lan-Fang, Zhang Shao-Feng, Feng Wen-Tian, Sha Shan, Qian Dong-Bin, Cao Shi-Ping, Zhang Da-Cheng. Experimental differential investigation of state-selective single electron capture in slow He2+-He collisions. Acta Physica Sinica, 2009, 58(3): 2077-2082. doi: 10.7498/aps.58.2077
    [17] Ma Jing, Ding Lei, Gu Xue-Jun, Fang Li, Zhang Wei-Jun, Wei Li-Xia, Wang Jing, Yang Bin, Huang Chao-Qun, Qi Fei. Vacuum ultraviolet photoionization and photodissociation of C2HCl3 by synchrotron radiation. Acta Physica Sinica, 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [18] Yao Guan-Xin, Wang Xiao-Li, Du Chuan-Mei, Li Hui-Min, Zhang Xian-Yi, Zheng Xian-Feng, Ji Xue-Han, Cui Zhi-Feng. An experimental investigation on the resonance enhanced multiphoton ionization and dissociation processes of acetone. Acta Physica Sinica, 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [19] Cheng Shan-Hua, Ning Zhao-Yuan, Huang Feng. . Acta Physica Sinica, 2002, 51(3): 668-673. doi: 10.7498/aps.51.668
    [20] Hu Zheng-Fa, Wang Zhen-Ya, Kong Xiang-Lei, Zhang Xian-Yi, Li Hai-Yang, Zhou Shi-Kang, Wang Juan, Wu Guo-Hua, Sheng Liu-Si, Zhang Yun-Wu. . Acta Physica Sinica, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
Metrics
  • Abstract views:  579
  • PDF Downloads:  21
  • Cited By: 0
Publishing process
  • Received Date:  15 August 2025
  • Accepted Date:  01 September 2025
  • Available Online:  05 September 2025
  • Published Online:  05 November 2025
  • /

    返回文章
    返回
    Baidu
    map