Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Strengthening mechanism and wear behavior of AlCrFeNiNbx high-entropy alloys from the perspective of phase modulation

HUANG Panyi LIU Zhicheng ZHOU Yongqiang PENG Wenyi QU Yuhai ZHANG Aisheng DENG Xiaohua ZHANG Longhe ZHOU Shiyi ZHOU Jie

Citation:

Strengthening mechanism and wear behavior of AlCrFeNiNbx high-entropy alloys from the perspective of phase modulation

HUANG Panyi, LIU Zhicheng, ZHOU Yongqiang, PENG Wenyi, QU Yuhai, ZHANG Aisheng, DENG Xiaohua, ZHANG Longhe, ZHOU Shiyi, ZHOU Jie
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • AlCoCrFeNi high-entropy alloys have consistently attracted attention due to their outstanding strength-to-ductility ratio. However, the substantial content of expensive cobalt in these alloys has somewhat limited their engineering applications. Consequently, there is an urgent need to design and develop high-performance, low-cost cobalt-free high-entropy alloys. AlCrFeNi alloys exhibit microstructures and properties similar to AlCoCrFeNi alloys. Simultaneously, the absence of Co significantly reduces costs and markedly improves casting performance. These alloys represent a potential structural material for harsh environments, demonstrating promising engineering applications. In order to explore the phase modulation mechanism of Nb element on AlCrFeNi alloy, this study combines experiments with first principles calculations to systematically investigate the effects of Nb on the microstructure, mechanical properties and wear resistance of AlCrFeNi alloy. The research results show that the AlCrFeNiNb0.4 high-entropy alloy has the best mechanical properties and wear resistance.The doping of Nb changes the wear mechanism of the AlCrFeNi alloy and improves the wear resistance of the alloy. This is attributed to the phase modulation effect of Nb on AlCrFeNi alloy. On the one hand, it induces the precipitation of Laves phase, which has high hardness, and on the other hand, it solidly dissolves in the BCC and B2 phases of the alloy, significantly improving the mechanical properties of the two phases. In addition, Nb doping refines the microstructure of the AlCrFeNi alloy, which leads to an increase in the phase interface density, thus enhancing the hardness, yield strength and wear resistance of the alloy. First principles calculations show that the Nb atoms change the electronic structures of the BCC and B2 phases in the AlCrFeNi alloy, thereby enhancing the stability of the two phases and confirming the solid solution strengthening effect of Nb on the two phases. The Nb atoms form strong antibonds with most of the atoms in the two phases, which further explains the nature of the generation of a large number of Laves phases in the microstructure of the alloy after Nb doping.
  • 图 1  晶体模型与等效位点 (a) Al2Cr8Fe8Ni2; (b) Al2Cr7Fe8 Ni2Nb; (c) Al8Cr2Fe2Ni8;(d) Al8Cr2FeNi8Nb

    Figure 1.  Crystal models and equivalents for points: (a) Al2Cr8Fe8Ni2; (b) Al2Cr7Fe8Ni2Nb; (c) Al8Cr2Fe2Ni8; (d) Al8Cr2FeNi8Nb.

    图 2  AlCrFeNiNbx高熵合金磨损性能测试 (a) 摩擦系数; (b) 磨损率

    Figure 2.  Wear performance test of AlCrFeNiNbx HEAs: (a) Friction coefficient; (b) wear rate.

    图 3  AlCrFeNiNbx磨损SEM及EDS图 (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3; (e) x = 0.4

    Figure 3.  SEM and EDS plots of AlCrFeNiNbx HEA wear: (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3; (e) x = 0.4.

    图 4  AlCrFeNiNbx高熵合金的XRD图谱 (a) 10°—90°; (b) 44°—45°

    Figure 4.  XRD patterns of AlCrFeNiNbx HEAs: (a) 10°–90°; (b) 44°–45°

    图 5  AlCrFeNiNbx高熵合金微观组织BSE图及EDS图 (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3; (e) x = 0.4.

    Figure 5.  BSEM and EDS plots of microstructure of AlCrFeNiNbx HEAs: (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3; (e) x = 0.4

    图 6  AlCrFeNiNbx高熵合金的(a)显微维氏硬度与(b)室温压缩曲线

    Figure 6.  (a) Microhardness and (b) room temperature compression curves of AlCrFeNiNbx HEAs.

    图 7  掺杂前后BCC相与B2相的(a)载荷-位移曲线和(b)纳米硬度以及弹性模量

    Figure 7.  (a) Load-displacement curves and (b) nanohardness and Young's modulus of BCC phase and B2 phase before and after doping.

    图 8  体系态密度图 (a) Al2Cr8Fe8Ni2; (b) Al2Cr7Fe8Ni2Nb; (c) Al8Cr2Fe2Ni8; (d) Al8Cr2FeNi8Nb

    Figure 8.  Density of state of systems: (a) Al2Cr8Fe8Ni2; (b) Al2Cr7Fe8Ni2Nb; (c) Al8Cr2Fe2Ni8; (d) Al8Cr2FeNi8Nb.

    图 9  体系差分电荷密度图 (a) Al2Cr8Fe8Ni2; (b) Al2Cr7Fe8Ni2Nb; (c) Al8Cr2Fe2Ni8; (d) Al8Cr2FeNi8Nb

    Figure 9.  Electron density difference of systems: (a) Al2Cr8Fe8Ni2; (b) Al2Cr7Fe8Ni2Nb; (c) Al8Cr2Fe2Ni8; (d) Al8Cr2FeNi8Nb.

    表 1  各相成分值

    Table 1.  Component values at each phase.

    AlloysPhasesAl/%Cr/%Fe/%Ni/%Nb/%
    Nb0BCC10.4144.0237.577.990
    B237.969.0313.1539.860
    Nb0.1BCC10.7746.2335.736.700.57
    B232.7013.1316.9735.861.34
    Laves9.3322.8331.6010.8625.37
    Nb0.2BCC9.1346.3536.036.232.26
    B232.2713.8516.6035.921.36
    Laves10.4123.4329.3911.0525.72
    Nb0.3BCC10.3042.9736.257.043.45
    B237.3410.1413.2637.811.45
    Laves10.7323.3629.4010.8425.67
    Nb0.4BCC10.7939.4935.147.367.23
    B234.3212.4415.0036.801.47
    Laves11.4523.5327.5811.2026.24
    DownLoad: CSV

    表 2  体系的总能量、缺陷形成能、形成热与结合能

    Table 2.  Total energy, defect formation energy, heat of formation and binding energy of the systems.

    System Site Ef H E Etotal
    Al2Cr8Fe8Ni2 –0.11667 –3.62827 –29079.07198
    AlCr8Fe8Ni2Nb Al site 1.17184 –0.05808 –3.84808 –30623.59838
    Al2Cr7Fe8Ni2Nb Cr site –0.00317 –0.11683 –3.90007 –28335.21599
    Al2Cr8Fe7Ni2Nb Fe site 1.10657 –0.06134 –3.85692 –29872.04588
    Al2Cr8Fe8NiNb Ni site 0.76522 –0.07841 –3.92992 –29358.95247
    Al8Cr2Fe2Ni8 –0.34288 –3.47834 –18426.86037
    Al7Cr2Fe2Ni8Nb Al site 0.51441 –0.31716 –3.73102 –19972.04421
    Al8CrFe2Ni8Nb Cr site –0.67442 –0.37660 –3.78370 –17683.67563
    Al8Cr2FeNi8Nb Fe site –1.45347 –0.41555 –3.83498 –19222.39432
    Al8Cr2Fe2Ni7Nb Ni site –1.26742 –0.40625 –3.88161 –18708.77351
    DownLoad: CSV

    表 3  Nb掺杂前后BCC相键的布居数

    Table 3.  Bond populations in the BCC phase before and after Nb doping.

    System Bond Population Length
    Al2Cr8Fe8Ni2 Ni—Ni 0.01 3.54777
    Fe—Ni 0.11 3.24825
    Fe—Fe 0.07 3.34922
    Cr—Ni –0.03 3.48801
    Cr—Fe –0.05 3.15932
    Cr—Cr –0.37 3.28039
    Al—Ni 0.11 3.42543
    Al—Fe 0.11 3.20017
    Al—Cr 0.08 3.05610
    Al—Al 0.00 4.80639
    Al2Cr7Fe8Ni2Nb Ni—Ni –0.02 3.73872
    Fe—Ni 0.10 3.32775
    Fe—Fe 0.07 3.34938
    Cr—Ni –0.09 3.65638
    Cr—Fe –0.05 3.13931
    Cr—Cr –0.39 3.12486
    Al—Ni 0.13 3.40228
    Al—Fe 0.11 3.23175
    Al—Cr 0.10 2.99913
    Al—Al 0.00 4.85985
    Ni—Nb 0.57 2.58120
    Fe—Nb –0.03 3.32742
    Cr—Nb –0.31 3.75318
    Al—Nb –0.14 3.66437
    DownLoad: CSV

    表 4  Nb掺杂前后B2相键的布居数

    Table 4.  Bond populations in the BCC phase before and after Nb doping.

    System Bond Population Length
    Al8Cr2Fe2Ni8 Al—Al 0.01 3.20558
    Al—Cr –0.44 3.07520
    Al—Fe 0.24 2.47738
    Al—Ni 0.27 2.70429
    Cr—Fe –1.00 2.44941
    Cr—Ni –0.40 2.50288
    Fe—Ni –0.15 3.07799
    Ni—Ni –0.20 3.21284
    Al8Cr2FeNi8Nb Al—Al –0.02 3.23276
    Al—Cr –0.26 3.24161
    Al—Fe 0.21 2.84415
    Al—Nb 0.00 2.65091
    Al—Ni 0.24 2.87858
    Cr—Fe –0.73 2.46354
    Cr—Nb –2.36 2.45989
    Cr—Ni –0.19 2.74444
    Fe—Ni –0.14 3.22725
    Ni—Nb –0.33 3.26054
    DownLoad: CSV

    表 5  各体系的弹性刚度常数

    Table 5.  Elastic stiffness constants of systems.

    Al2Cr8Fe8Ni2 Al2Cr7Fe8Ni2Nb Al8Cr2Fe2Ni8 Al8Cr2FeNi8Nb
    C11 128.29975 736.29805 270.3648 127.11465
    C22 177.42665 215.33585 691.93215 203.93235
    C33 267.0162 –375.11635 250.2832 1766.9252
    C12 178.20038 343.45855 93.53145 74.19628
    C23 160.14022 –33.38788 81.9077 256.06083
    C13 177.82828 304.61232 97.42585 345.99403
    C44 –92.7819 167.42425 31.8253 59.76855
    C55 –22.91365 –568.51245 53.94125 71.5073
    C66 81.31915 333.01795 64.64615 31.13195
    DownLoad: CSV

    表 6  各体系的弹性柔顺常数

    Table 6.  Elastic flexibility constants of systems.

    Al2Cr8Fe8Ni2 Al2Cr7Fe8Ni2Nb Al8Cr2Fe2Ni8 Al8Cr2FeNi8Nb
    S11 –0.0156972 0.0004691 0.00475 0.0242321
    S22 0.0010798 0.0025236 0.0015446 0.0065644
    S33 0.005798 0.0088133 0.0054491 0.0021923
    S12 0.0131561 0.0029681 –0.0004152 –0.0019679
    S23 –0.0082161 –0.0063358 –0.0003173 –0.0007382
    S13 0.0026282 –0.0003899 –0.002034 –0.0055097
    S44 0.0106177 –0.0063815 0.0665176 0.0392295
    S55 0.0225751 0.006832 0.0391124 0.0261333
    S66 0.0115169 –0.0040258 0.0181006 0.038512
    DownLoad: CSV

    表 7  各体系的弹性常数

    Table 7.  Elastic constants of systems.

    SystemsB/GPaG/GPaE/GPaHV/GPa
    Al2Cr8Fe8Ni2168.320107.811266.52915.356
    Al2Cr7Fe8Ni2Nb216.860137.470340.46817.906
    Al8Cr2Fe2Ni8178.19163.838171.0845.431
    Al8Cr2FeNi8Nb221.89179.373212.7516.325
    DownLoad: CSV
    Baidu
  • [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Braeckman B R, Boydens F, Hidalgo H, Dutheil P, Jullien M, Thomann A L, Depla D 2015 Thin Solid Films 580 71Google Scholar

    [3]

    Tsai M H, Yeh J W 2014 Mater. Res. Lett. 2 107Google Scholar

    [4]

    Tsai K Y, Tsai M H, Ye J W 2013 Acta Mater. 61 4887Google Scholar

    [5]

    Dong Y, Lu Y P, Kong J R, Zhang J J, Li T J 2013 J. Alloys Compd. 573 96Google Scholar

    [6]

    Ding Q Q, Zhang Y, Chen X, Fu X Q, Chen D K, Chen S J, Gu L, Wei F, Bei H B, Gao Y F, Wen M R, Li J X, Zhang Z, Zhu T, Ritchie R O, Yu Q 2019 Nature 574 223Google Scholar

    [7]

    Yang Y F, Hu F, Xia T, Li R H, Bai J Y, Zhu J Q, Zhang G F 2024 J. Alloys Compd. 986 177691

    [8]

    Hua Z L, Guo L, Zhang Y, Dai Y L, Zhang D C, Mei F S, Lin J G 2025 Intermetallics 180 108711Google Scholar

    [9]

    Tian T, Zhang X L, Xue Y Z, Huang H B, Jiang Q Q, Tang J G 2024 Mol. Catal. 569 114571

    [10]

    Liu J H, Li Z H, Lin D Y, Tang Z X, Song X G, He P, Zhang S Y, Bian H, Fu W, Song Y 2024 J. Mater. Sci. Technol. 189 211Google Scholar

    [11]

    Sonar T, Ivanov M, Trofimov E, Tingaev A, Suleymanova I 2024 Mater. Sci. Energy Technol. 7 35

    [12]

    Zhao Q, Ren Z X, Zhao P W, Yoshida K 2025 Phys. Lett. B 860 139196Google Scholar

    [13]

    Gutierrez R E, Matanovic I, Polak M P, Morgan D, Schamiloglu E 2025 J. Electron Spectrosc. Relat. Phenom. 278 147512Google Scholar

    [14]

    Doan D Q, Fang T H, Chen T H 2021 Sci. Rep. 11 13680Google Scholar

    [15]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1Google Scholar

    [16]

    Jiang Z F, Chen W P, Xia Z B, Xiong W, Fu Z Q 2019 Intermetallics 108 45Google Scholar

    [17]

    Zhang J J, Yang J J, Liu T G, Tian D H, Liu H C, Yang G C, Lu Y H, Shoji T 2024 J. Mater. Res. Technol. 33 6688Google Scholar

    [18]

    Ma Q, Zhao W, Li X, Gao W F, Zhang H, Ma X, Lv Y X, Xiao G C 2024 Mater. Charact. 215 114146Google Scholar

    [19]

    Wang Z W, Li Y C, Dong H, Wang Y 2025 Tribol. Int. 202 110379Google Scholar

    [20]

    Munitz A, Salhov S, Guttmann G, Derimow N, Nahmany M 2019 Mater. Sci. Eng. A 742 1Google Scholar

    [21]

    Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [22]

    Wu T, Yang C, Yu L T, Zheng X F, Zhang L F, Jiang Y T, Xue X P, Lu Y H, Luan B L 2024 Appl. Surf. Sci. 677 161032Google Scholar

    [23]

    Li Z, Gain A K, Cui Y L, Zhang L C 2025 Wear 570 205934Google Scholar

    [24]

    Xie Y J, Jiang W Y, Xu K G, Wen X, Huang B S 2025 Mater. Today Commun. 43 111662Google Scholar

    [25]

    Kang H Y, Yang X H, Sun X Y, Wang C Y, Xiao P 2025 J. Alloys Compd. 1010 177873Google Scholar

    [26]

    Liu S, Zhan Y Z, Wu J Y, Chen X X, Ye H M 2016 Comput. Mater. Sci. 117 1Google Scholar

    [27]

    Chen X Q, Niu H Y, Li D Z, Li Y Y 2011 Intermetallics 19 1275Google Scholar

    [28]

    Sun L, Huang Y D, Zhao K F, Chen Z M, Shang X T, Xu W, Zhai W Y, Han P Y, Jia J, Peng J H 2025 Comput. Condens. Matter 43 e01027Google Scholar

    [29]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [30]

    Hu W C, Liu Y, Li D J, Li K, Jin H L, Xu Y X, Zeng X Q 2014 Philos. Mag. 94 3945Google Scholar

  • [1] WU Hao, WANG Xu, WANG Jianyuan, ZHAI Wei, WEI Bingbo. Three-dimensional ultrasounds modulated solidification microstructure and mechanical property of (FeCoNiCrMn)92Mo8 high-entropy alloy. Acta Physica Sinica, doi: 10.7498/aps.74.20250657
    [2] BO Le, GAO Xiaoyu, NING Zhiliang, WANG Li, SUN Jianfei, ZHANG Zhenjiang, HUANG Yongjiang. Optimizing microstructure and mechanical properties of CoCrFeNi high-entropy alloy microfibers by electric current treatment. Acta Physica Sinica, doi: 10.7498/aps.74.20250518
    [3] HUA Sunmingqiang, KONG Detong, HU Xiao, SHE Xu, WANG Xiao, WANG Yuan. First-principles study of stabilities, electronic structures, and mechanical properties of M(Mn, Ti, Mo)-doped α-Fe. Acta Physica Sinica, doi: 10.7498/aps.74.20251044
    [4] Hu Ting-He, Li Zhi-Hao, Zhang Qian-Fan. First principles and molecular dynamics simulations of effect of dopants on properties of high strength steel for hydrogen storage vessels. Acta Physica Sinica, doi: 10.7498/aps.73.20231735
    [5] Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun. Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method. Acta Physica Sinica, doi: 10.7498/aps.71.20220733
    [6] Deng Shi-Jie, Zhao Yu-Hong, Hou Hua, Wen Zhi-Qin, Han Pei-De. Structural, mechanical and thermodynamic properties of Ti2AlX (X= C, N) at high pressure. Acta Physica Sinica, doi: 10.7498/aps.66.146101
    [7] Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong. Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide. Acta Physica Sinica, doi: 10.7498/aps.65.176201
    [8] Fan Tao, Zeng Qing-Feng, Yu Shu-Yin. Novel compounds in the hafnium nitride system: first principle study of their crystal structures and mechanical properties. Acta Physica Sinica, doi: 10.7498/aps.65.118102
    [9] Pan Xin-Dong, Wei Yan, Cai Hong-Zhong, Qi Xiao-Hong, Zheng Xu, Hu Chang-Yi, Zhang Xu-Xiang. Effect of Rh content on the mechanical properties of Ir-Rh alloy based on the first principle. Acta Physica Sinica, doi: 10.7498/aps.65.156201
    [10] Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng. Influence of metal element doping on the mechanical properties of TiAl alloy. Acta Physica Sinica, doi: 10.7498/aps.65.077101
    [11] Ma Bing-Yang, Zhang An-Ming, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Amorphizing and mechanical properties of co-sputtered Al-Zr alloy films. Acta Physica Sinica, doi: 10.7498/aps.63.136801
    [12] Ru Qiang, Li Yan-Ling, Hu She-Jun, Peng Wei, Zhang Zhi-Wen. The investigation of lithium insertion mechanism for Sn3InSb4 alloy based on first-principle calculation. Acta Physica Sinica, doi: 10.7498/aps.61.038210
    [13] Li Ai-Hong, Mu Yan-Qing, Yang Wei-Ming, Hou Hua, Han Pei-De, Zhang Su-Ying, Huang Zhi-Wei, Zhao Yu-Hong. First principles study on substitution behavior and alloying effects of Nb in Ni3Al. Acta Physica Sinica, doi: 10.7498/aps.60.047103
    [14] Hou Qing-Yu, Zao Chun-Wang, Li Ji-Jun, Wang Gang. Frist principles study of effect of high Al doping concentrationof p-type ZnO on electric conductivity performance. Acta Physica Sinica, doi: 10.7498/aps.60.047104
    [15] Hou Qing-Yu, Zhao Chun-Wang, Jin Yong-Jun, Guan Yu-Qin, Lin Lin, Li Ji-Jun. Effects of the concentration of Ga high doping on electric conductivity and red shift of ZnO from frist-principles. Acta Physica Sinica, doi: 10.7498/aps.59.4156
    [16] Hou Qing-Yu, Zhao Chun-Wang, Jin Yong-Jun. First-principles study on the effects of the concentration of Al-2N high codoping on the electric conducting performance of ZnO. Acta Physica Sinica, doi: 10.7498/aps.58.7136
    [17] Yu Wei-Yang, Tang Bi-Yu, Peng Li-Ming, Ding Wen-Jiang. Electronic structure and mechanical properties of α-Mg3Sb2. Acta Physica Sinica, doi: 10.7498/aps.58.216
    [18] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, doi: 10.7498/aps.56.6118
    [19] Li Teng, Li Wei, Pan Wei, Li Xiu-Mei. Effect of microstructure on the mechanical properties of Fe45—50 Cr30—35Co20—25Mo0—4Zr0—2 alloy. Acta Physica Sinica, doi: 10.7498/aps.54.4395
    [20] Zheng Li-Jing, Li Shu-Suo, Li Huan-Xi, Chen Chang-Qi, Han Ya-Fang, Dong Bao-Zhong. Small angle x-ray scattering study on microstructure and mechanical property evo lutions of equal-channel angular pressed 7050 Al alloy. Acta Physica Sinica, doi: 10.7498/aps.54.1665
Metrics
  • Abstract views:  300
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  22 July 2025
  • Accepted Date:  26 September 2025
  • Available Online:  30 September 2025
  • /

    返回文章
    返回
    Baidu
    map