Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stability of Σ5{310}[001]Grain Boundary in (HfNbTaTiZr)C High-Entropy Carbide and Its Implications for Mechanical Performance

Li Chuanying Fu Tao Peng Xianghe

Citation:

Stability of Σ5{310}[001]Grain Boundary in (HfNbTaTiZr)C High-Entropy Carbide and Its Implications for Mechanical Performance

Li Chuanying, Fu Tao, Peng Xianghe
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The characteristics of grain boundaries (GBs) and their mechanical responses under external loading are pivotal in governing the strength and plasticity of polycrystalline ceramics. In this study, first-principles calculations were employed to investigate the stability of Σ5 {310}[001] GBs in (HfNbTaTiZr)C high-entropy carbide ceramic (HECCs) and its constituent binary transition-metal carbides (TMCs), as well as their mechanical behavior under shear and tensile deformation. The results showed that the Σ5{310}[001] GBs in all systems were classified into "Open GB" and "Compact GB" based on their morphologies, with the Open GB exhibiting lower GB formation energy and thus greater structural stability. Under shear deformation, all carbides display shear-coupled GB migration, except for the Open GBs in group IVB TMCs, where the formation of C-C bonds induces supercell failure through the rupture of TM-C bonds. Furthermore, the initial migration stress of Open GB in the HECC is higher than that in binary TMCs, highlighting the strengthening effect introduced by multicomponent GBs. Under tensile deformation, binary TMCs containing Compact GB primarily fail through graphitization, whereas the HECC exhibits both graphitization and intergranular fracture. For Open GB, group IVB TMCs yield due to increased excess volume of GB, while group VB TMCs undergo intergranular fracture; both failure mechanisms coexist in the HECC. Notably, the HECC containing Compact GBs exhibits yield strength comparable to the peak strength of binary TMCs, surpassing the "weakest-link" limit typically associated with ideal condition (0 K and defect-free). Overall, this work elucidates the synergistic roles of GB and multicomponent effects in governing mechanical responses in HECC, suggesting that the interplay between multicomponent effects and defects may underlie the exceptional mechanical performance of high-entropy materials. These findings provide theoretical guidance for GB engineering and mechanical optimization in HECCs, and they offer insights into exploring their mechanical behavior under complex defect interactions.
  • [1]

    Yeh J W, Chen S K, Gan J Y, Lin S J, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Metall. Mater. Trans. A 35 A 2533

    [2]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448

    [3]

    Ding Q Q, Zhang Y, Chen X, Fu X Q, Chen D K, Chen S J, Gu L, Wei F, Bei H B, Gao Y F, Wen M R, Li J X, Zhang Z, Zhu T, Ritchie R O, Yu Q 2019 Nat. 574 223

    [4]

    Yu X L, Chen Q J, Cui X, Ouyang D L 2025 Nat. Commun. 16 2828

    [5]

    Zhang R-Z, Reece M J 2019 J. Mater. Chem. A 7 22148

    [6]

    Sangiovanni D G, Tasnadi F, Harrington T, Oden M, Vecchio K S, Abrikosov I A 2021 Mater. Des. 204 109634

    [7]

    Huang S S, Zhang J, Fu H J, Xiong Y X, Ma S H, Xiang X P, Xu B, Lu W Y, Zhang Y W, Weber W J, Zhao S J 2024 Prog. Mater Sci. 143 101250

    [8]

    Anand G, Wynn A P, Handley C M, Freeman C L 2018 Acta Mater. 146 119

    [9]

    Jana S S, Banerjee R, Maiti T 2025 J. Mater. Chem. A 13 27050

    [10]

    Gild J, Zhang Y Y, Harrington T, Jiang S C, Hu T, Quinn M C, Mellor W M, Zhou N X, Vecchio K, Luo J 2016 Sci. Rep. 6 37946

    [11]

    Yang Y, Liang S Y, Bi J Q, Hou H L, Qiao L J, Liu S S, Wang T, Gong H Y, Qian Z, Shi J W, Li W Q 2025 J. Am. Ceram. Soc. 108 e20503

    [12]

    Yan X H, Liaw P K, Zhang Y 2021 Metall. Mater. Trans. A 52 2111

    [13]

    Li J C, Chen Y J, Zhao Y M, Shi X W, Wang S, Zhang S 2022 J. Alloys Compd. 926 166807

    [14]

    Yan X L, Constantin L, Lu Y F, Silvain J-F, Nastasi M, Cui B 2018 J. Am. Ceram. Soc. 101 4486

    [15]

    Zhou J Y, Zhang J Y, Zhang F, Niu B, Lei L W, Wang W M 2018 Ceram. Int. 44 22014

    [16]

    Ye B L, Wen T Q, Nguyen M C, Hao L Y, Wang C-Z, Chu Y H 2019 Acta Mater. 170 15

    [17]

    Cao Z N, Sun J L, Meng L T, Zhang K G, Zhao J, Huang Z F, Yun X L 2023 J. Mater. Sci. Technol. 161 10

    [18]

    Yu D, Yin J, Zhang B H, Liu X J, Reece M J, Liu W, Huang Z R 2021 J. Eur. Ceram. Soc. 41 3823

    [19]

    Ye B L, Wen T Q, Liu D, Chu Y H 2019 Corros. Sci. 153 327

    [20]

    Ye B L, Wen T Q, Huang K H, Wang C Z, Chu Y H 2019 J. Am. Ceram. Soc. 102 4344

    [21]

    Li C Y, Fu T, Hu H, Weng S Y, Peng X H 2025 ACS Appl. Mater. Interfaces 17 36960

    [22]

    Li C Y, Fu T, Shen X, Hu H, Weng S Y, Yin D Q, Peng X H 2024 Surf. Interf. 52 104982

    [23]

    Zhu Y J, Guan L, Duan C Q, Zhang J X, Yan Z K, Wen L C, Wang Z H, Sun X X, Yao Y L, Guo X Q, Zhang R, Zhao B 2025 J. Mater. Sci. Technol. 224 302

    [24]

    Perrin A E, Schuh C A 2021 Annu. Rev. Mater. Res. 51 241

    [25]

    Meiners T, Frolov T, Rudd R E, Dehm G, Liebscher C H 2020 Nat. 579 375

    [26]

    Frolov T, Olmsted D L, Asta M, Mishin Y 2013 Nat. Commun. 4 1899

    [27]

    Wang Z Q, Wu H H, Wu Y, Huang H L, Zhu X Y, Zhang Y J, Zhu H H, Yuan X Y, Chen Q, Wang S D, Liu X J, Wang H, Jiang S H, Kim M J, Lu Z P 2022 Mater. Today 54 83

    [28]

    Julie S, David C, Wasekar N P, Parida P K, Ghosh C 2024 Surf. Interf. 46 103938

    [29]

    Zhu Q, Cao G, Wang J W, Deng C, Li J X, Zhang Z, Mao S X 2019 Nat. Commun. 10 156

    [30]

    Rajabzadeh A, Mompiou F, Legros M, Combe N 2013 Phys. Rev. Lett. 110 265507

    [31]

    Tatami J, Yasuda K, Matsuo Y, Kimura S (Sōmiya S, et al. ed) 1998 Materials Science and Engineering Serving Society (Amsterdam: Elsevier Science B.V.) pp69-72

    [32]

    Wang C Y, Qin M D, Lei T J, He Y B, Kisslinger K, Rupert T J, Luo J, Xin H L 2021 J. Eur. Ceram. Soc. 41 5380

    [33]

    Wang B W, Pan C L, Jin Z Y, Zhu H M, Lu C, Hufenbach J K, Li X Q, Kosiba K 2025 Virtual Phys. Prototy. 20 e2515238

    [34]

    Hu H, Fu T, Wang S Y, Li C Y, Weng S, Yin D Q, Peng X H 2025 Int. J. Plast. 185 104219

    [35]

    Wang Z C, Saito M, McKenna K P, Gu L, Tsukimoto S, Shluger A L, Ikuhara Y 2011 Nat. 479 380

    [36]

    Patala S, Mason J K, Schuh C A 2012 Prog. Mater Sci. 57 1383

    [37]

    Cantwell P R, Frolov T, Rupert T J, Krause A R, Marvel C J, Rohrer G S, Rickman J M, Harmer M P 2020 Annu. Rev. Mater. Res. 50 465

    [38]

    Kumar N, Choudhuri D, Banerjee R, Mishra R S 2015 Int. J. Plast. 68 77

    [39]

    Trahanovsky M E 2012 Bicrystal-array fabrication (University of California, Berkeley)

    [40]

    Duffy D M, Tasker P W 1983 Philos. Mag. A 47 817

    [41]

    Verma A K, Karki B B 2010 Am. Mineral. 95 1035

    [42]

    Sun X-Y, Cordier P, Taupin V, Fressengeas C, Karki B B 2017 Eur. J. Mineral. 29 155

    [43]

    Bean J J, Saito M, Fukami S, Sato H, Ikeda S, Ohno H, Ikuhara Y, McKenna K P 2017 Sci. Rep. 7 45594

    [44]

    Hirel P, Carrez P, Cordier P 2022 Acta Mater. 240 118297

    [45]

    Cottom J, Bochkarev A, Olsson E, Patel K, Munde M, Spitaler J, Popov M N, Bosman M, Shluger A L 2019 ACS Appl. Mater. Interfaces 11 36232

    [46]

    Popov M N, Bochkarev A S, Razumovskiy V I, Puschnig P, Spitaler J 2018 Acta Mater. 144 496

    [47]

    McKenna K P 2018 J. Appl. Phys. 123 075301

    [48]

    Zhang L, Wang L, Yu W S, Shen S P, Fu T 2019 Ceram. Int. 45 5531

    [49]

    Dai F-Z, Sun Y J, Ren Y X, Xiang H M, Zhou Y C 2022 J. Mater. Sci. Technol. 101 234

    [50]

    Karki B B, Ghosh D B, Verma A K 2015 Am. Mineral. 100 1053

    [51]

    Yokoi T, Yoshiya M 2018 Physica B: Condensed Matter 532 2

    [52]

    Yu R, He L L, Ye H Q 2003 Acta Mater. 51 2477

    [53]

    Yu R, Zhan Q, He L L, Zhou Y C, Ye H Q 2002 Acta Mater. 50 4127

    [54]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [55]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [56]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [57]

    Li C Y, Fu T, Li X L, Hu H, Peng X H 2023 Phys. Rev. B 107 224106

    [58]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [59]

    Wolf D (Buschow K H J, et al. ed) 2001 Encyclopedia of Materials: Science and Technology (Oxford: Elsevier) pp3597-3609

    [60]

    Hirel P 2015 Comput. Phys. Commun. 197 212

    [61]

    Yokoi T, Ikawa K, Nakamura A, Matsunaga K 2021 Phys. Chem. Chem. Phys. 23 10118

    [62]

    Yokoi T, Arakawa Y, Ikawa K, Nakamura A, Matsunaga K 2020 Phys. Rev. Mater. 4 026002

    [63]

    Feng L, Chen W-T, Fahrenholtz W G, Hilmas G E 2021 J. Am. Ceram. Soc. 104 419

    [64]

    Zhang W, Chen L, Xu C G, Lu W Y, Wang Y J, Ouyang J H, Zhou Y 2021 J. Mater. Sci. Technol. 72 23

    [65]

    Oses C, Toher C, Curtarolo S 2020 Nat. Rev. Mater. 5 295

    [66]

    Sangiovanni D G, Mellor W, Harrington T, Kaufmann K, Vecchio K 2021 Mater. Des. 209 109932

    [67]

    Akrami S, Edalati P, Fuji M, Edalati K 2021 Mater. Sci. Eng. R-Rep. 146 100644

    [68]

    Qian C, Zhang X Q, Chen X Y, Su L J, Chen R, Wen J S, Wu B 2025 Surf. Interf. 72 107071

    [69]

    Song W Y, Lu Y J, Wang C Y, Xu J H, Liu X, Ma B, Wang Y M, Wu B 2024 J. Alloys Compd. 1002 175455

    [70]

    Zhang C-b, Qian C, Ye Z-a, Zhao P-h, Chen R, Wu B, Qiao Y, Weng L-j, Su L-j, Xie T-l, Sa B-s, Liu Y, Wang C-x 2025 T. Nonferr. Metal. Soc. 35 2320

    [71]

    He Q F, Tang P H, Chen H A, Lan S, Wang J G, Luan J H, Du M, Liu Y, Liu C T, Pao C W, Yang Y 2021 Acta Mater. 216 117140

    [72]

    Yu H, Bahadori M, Thompson G B, Weinberger C R 2017 J. Mater. Sci 52 6235

    [73]

    Yu X-X, Weinberger C R, Thompson G B 2016 Comput. Mater. Sci. 112 318

    [74]

    Aleman A, Zaid H, Cruz B M, Tanaka K, Yang J M, Kindlund H, Kodambaka S 2021 Acta Mater. 221 117384

    [75]

    Rowcliffe D J, Hollox G E 1971 J. Mater. Sci 6 1261

    [76]

    Kiani S, Yang J-M, Kodambaka S 2015 J. Am. Ceram. Soc. 98 2313

    [77]

    Li C Y, Fu T, Hu H, Duan M Y, Weng S Y, Peng X H 2024 Phys. Rev. B 109 134110

    [78]

    van Driel J, Schusteritsch G, Brodholt J P, Dobson D P, Pickard C J 2020 Phys. Chem. Miner. 47 11

    [79]

    De Leon N, Yu X X, Yu H, Weinberger C R, Thompson G B 2015 Phys. Rev. Lett. 114 165502

    [80]

    Li C Y, Fu T, Hu H, Peng X H 2022 Phys. Rev. B 105 224102

    [81]

    Zhang J, Xu B, Xiong Y X, Ma S H, Wang Z, Wu Z G, Zhao S J 2022 npj Comput. Mater. 8 5

    [82]

    Peng C, Gao X, Wang M Z, Wu L L, Tang H, Li X M, Zhang Q, Ren Y, Zhang F X, Wang Y H, Zhang B, Gao B, Zou Q, Zhao Y C, Yang Q, Tian D X, Xiao H, Gou H Y, Yang W G, Bai X D, Mao W L, Mao H-k 2019 Appl. Phys. Lett. 114 011905

    [83]

    Wang Z, Li Z-T, Zhao S-J, Wu Z-G 2021 Tungsten 3 131

    [84]

    Zhao S J 2021 J. Am. Ceram. Soc. 104 1874

    [85]

    Liu Y W, Ma M D, Wang W, Tang H F, Yu H L, Zhuang L, Xie P B, Chu Y H 2025 Adv. Funct. Mater. 35 2416992

  • [1] WU Hao, WANG Xu, WANG Jianyuan, ZHAI Wei, WEI Bingbo. Three-dimensional ultrasounds modulated solidification microstructure and mechanical property of (FeCoNiCrMn)92Mo8 high-entropy alloy. Acta Physica Sinica, doi: 10.7498/aps.74.20250657
    [2] BO Le, GAO Xiaoyu, NING Zhiliang, WANG Li, SUN Jianfei, ZHANG Zhenjiang, HUANG Yongjiang. Optimizing microstructure and mechanical properties of CoCrFeNi high-entropy alloy microfibers by electric current treatment. Acta Physica Sinica, doi: 10.7498/aps.74.20250518
    [3] Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun. Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method. Acta Physica Sinica, doi: 10.7498/aps.71.20220733
    [4] Liang Yu-Hao, Fan Li-Zhen. Mechanical failures in solid-state lithium batteries and their solution. Acta Physica Sinica, doi: 10.7498/aps.69.20200713
    [5] Zhou Liang-Fu, Zhang Jing, He Wen-Hao, Wang Dong, Su Xue, Yang Dong-Yang, Li Yu-Hong. The nucleation and growth of Helium hubbles at grain boundaries of bcc tungsten: a molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.69.20191069
    [6] Shao Yu-Fei, Meng Fan-Shun, Li Jiu-Hui, Zhao Xing. Molecular dynamics simulations for tensile behaviors of mono-layer MoS2 with twin boundary. Acta Physica Sinica, doi: 10.7498/aps.68.20182125
    [7] Yi Jun. Fabrications and mechanical behaviors of amorphous fibers. Acta Physica Sinica, doi: 10.7498/aps.66.178102
    [8] Chen Zhi-Peng, Ma Ya-Nan, Lin Xue-Ling, Pan Feng-Chun, Xi Li-Ying, Ma Zhi, Zheng Fu, Wang Yan-Qing, Chen Huan-Ming. Electronic structure and mechanical properties of Nb-doped -TiAl intermetallic compound. Acta Physica Sinica, doi: 10.7498/aps.66.196101
    [9] Liu Xue-Mei, Liu Guo-Quan, Li Ding-Peng, Wang Hai-Bin, Song Xiao-Yan. Preparation and properties of polycrystalline and nanocrystalline Sm3Co alloys. Acta Physica Sinica, doi: 10.7498/aps.63.098102
    [10] Ma Bing-Yang, Zhang An-Ming, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Amorphizing and mechanical properties of co-sputtered Al-Zr alloy films. Acta Physica Sinica, doi: 10.7498/aps.63.136801
    [11] Wang Chen, Song Hai-Yang, An Min-Rong. Molecular dynamics simulation of effect of tilt angle on mechanical property of magnesium bicrystals. Acta Physica Sinica, doi: 10.7498/aps.63.046201
    [12] Wang Bin-Ke, Tian Xiao-Xia, Xu Zhuo, Qu Shao-Bo, Li Zhen-Rong. Preparation and performances of KNN-based lead-free transparent ceramics. Acta Physica Sinica, doi: 10.7498/aps.61.197703
    [13] Wang Ying, Lu Tie-Cheng, Wang Yue-Zhong, Yue Shun-Li, Qi Jian-Qi, Pan Lei. Investigation of the electronic and mechanical properties of Al2O3-AlN solid solution by virtual crystal approximation. Acta Physica Sinica, doi: 10.7498/aps.61.167101
    [14] Ma Wen, Zhu Wen-Jun, Chen Kai-Guo, Jing Fu-Qian. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Acta Physica Sinica, doi: 10.7498/aps.60.016107
    [15] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, doi: 10.7498/aps.60.077104
    [16] Xu Jin-Feng, Fan Yu-Fang, Chen Wei, Zhai Qiu-Ya. Characterization of rapidly solidified Cu-Pb hypermonotectic alloys. Acta Physica Sinica, doi: 10.7498/aps.58.644
    [17] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, doi: 10.7498/aps.56.6118
    [18] Li Pei-Gang, Lei Ming, Tang Wei-Hua, Song Peng-Yun, Chen Chin-Ping, Li Ling-Hong. The effect of grain boundaries on magnetic and transport properties in colossal magnetoresistance particle film. Acta Physica Sinica, doi: 10.7498/aps.55.2328
    [19] Zhang Lin, Wang Shao-Qing, Ye Heng-Qiang. Molecular dynamics study of the structure changes in a high-angle Cu grain boundary by heating and quenching. Acta Physica Sinica, doi: 10.7498/aps.53.2497
    [20] Wen Yu-Hua, Zhu Tao, Cao Li-Xia, Wang Chong-Yu. Ni/Ni3Al grain boundary of Ni-based single superalloys: molecular dyn amics simulation. Acta Physica Sinica, doi: 10.7498/aps.52.2520
Metrics
  • Abstract views:  52
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  18 December 2025
  • /

    返回文章
    返回
    Baidu
    map