Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of stabilities, electronic structures, and mechanical properties of M(Mn, Ti, Mo)-doped α-Fe

HUA Sunmingqiang KONG Detong HU Xiao SHE Xu WANG Xiao WANG Yuan

Citation:

First-principles study of stabilities, electronic structures, and mechanical properties of M(Mn, Ti, Mo)-doped α-Fe

HUA Sunmingqiang, KONG Detong, HU Xiao, SHE Xu, WANG Xiao, WANG Yuan
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Ferrite (α-Fe), as a fundamental phase of steel materials, plays a decisive role in determining their macroscopic mechanical behaviors through its microscopic properties, particularly in engineering applications involving resistance to plastic deformation and fracture, fatigue resistance, wear resistance, and low-temperature toughness. Therefore, alloying elements are commonly introduced to improve the performance of steel via mechanisms such as grain refinement strengthening and precipitation strengthening. However, in these strengthening mechanisms, the effects of doped alloying elements on the stability, electronic structure, and mechanical properties of ferrite itself have not been thoroughly investigated. In this study, orthogonal experimental design and first-principles calculations are employed to investigate the effects of ternary alloy doping with M (Mn, Ti, Mo) on the stabilities, electronic structures, and mechanical properties of a ferrite-based supercell model Fe16-x-y-zMnxTiyMoz (x, y, or z = 0, 1, or 2), aiming to provide both theoretical insight and experimental reference for improving the comprehensive performance of ferrite-based steels by modifying the properties of the matrix phase. The results of the formation enthalpy (Hform) calculations indicate that all solid solutions have negative formation enthalpies, suggesting that they can form spontaneously. Among them, Ti doping is the most favorable for solid solution formation, followed by Mn, with Mo being the least favorable. The Fe13Ti1Mo2 configuration is the easiest to form spontaneously. The cohesive energy (Ecoh) results demonstrate that all solid solutions exhibit structural stabilities. Fe13Ti1Mo2 has the largest (most negative) cohesive energy of –477.96 eV, indicating that it possesses the highest structural stability. The contribution of Mo doping to stability enhancement is the greatest, followed by Ti, while the influence of Mn is the smallest. Electronic structure calculations reveal that M doping consistently reduces the density of states (DOS) at the Fermi level for Fe16-x-y-zMnxTiyMoz. The lowest DOS at the Fermi level is found to be 4.294 in Fe13Ti1Mo2, indicating enhanced hybridization and overlap between Mn 3d, Ti 3d, Mo 4d, and Fe 3d states. This strong hybridization leads to a decrease in the Fermi level and contributes to the high stability of the Fe13Ti1Mo2 phase. Mechanical property calculations indicate that M doping reduces the Young’s modulus (E) and Vickers hardness (HV) of the solid solutions. However, the K values (K = GH/BH) are all greater than 1.75, and Poisson’s ratios (ν) exceed 0.26, implying that while stiffness and hardness decrease, the ductility of the materials is improved. This study provides valuable guidance for designing ductile and tough ferrite-based steel materials.
  • 图 1  Fe16-x-y-zMnxTiyMoz超胞模型 (a) Fe16; (b) Fe13Ti2Mo1; (c) Fe13Ti1Mo2; (d) Fe13Mn1Ti2; (e) Fe13Mn1Ti1Mo1; (f) Fe13Mn1Mo2; (g) Fe13Mn2Ti1; (h) Fe13Mn2Mo1; (i) Fe10Mn2Ti2Mo2

    Figure 1.  Supercell model of Fe16-x-y-zMnxTiyMoz: (a) Fe16; (b) Fe13Ti2Mo1; (c) Fe13Ti1Mo2; (d) Fe13Mn1Ti2; (e) Fe13Mn1Ti1Mo1; (f) Fe13Mn1Mo2; (g) Fe13Mn2Ti1; (h) Fe13Mn2Mo1; (i) Fe10Mn2Ti2Mo2.

    图 2  态密度图和分波态密度图 (a) Fe16; (b) Fe13Ti2Mo1; (c) Fe10Mn2Ti2Mo2; (d) Fe13Ti1Mo2; (e) Fe13Mn1Ti1Mo1; (f) Fe13Mn1Ti2

    Figure 2.  Density of states and partial density of states plots: (a) Fe16; (b) Fe13Ti2Mo1; (c) Fe10Mn2Ti2Mo2; (d) Fe13Ti1Mo2; (e) Fe13Mn1Ti1Mo1; (f) Fe13Mn1Ti2.

    图 3  差分电荷密度图 (a) Fe16; (b) Fe13Ti2Mo1; (c) Fe10Mn2Ti2Mo2; (d) Fe13Ti1Mo2; (e) Fe13Mn1Ti1Mo1; (f) Fe13Mn1Ti2

    Figure 3.  Differential charge density diagram: (a) Fe16; (b) Fe13Ti2Mo1; (c) Fe10Mn2Ti2Mo2; (d) Fe13Ti1Mo2; (e) Fe13Mn1Ti1Mo1; (f) Fe13Mn1Ti2.

    表 1  M掺杂α-Fe的正交试验设计及原子百分比

    Table 1.  Orthogonal experimental design and atomic percentage content of M-doped α-Fe.

    超胞元素M原子百分比/%
    MnTiMo
    Fe16000
    Fe13Ti2Mo1012.56.25
    Fe13Ti1Mo206.2512.5
    Fe13Mn1Ti26.2512.50
    Fe13Mn1Ti1Mo16.256.256.25
    Fe13Mn1Mo26.25012.5
    Fe13Mn2Ti112.56.250
    Fe13Mn2Mo112.506.25
    Fe10Mn2Ti2Mo212.512.512.5
    DownLoad: CSV

    表 2  Fe16-x-y-zMnxTiyMozε, HformEcoh的计算值

    Table 2.  Calculated values of ε, Hform and Ecoh for Fe16-x-y-zMnxTiyMoz.

    超胞 晶胞体积 ε/% Hform
    /(kJ·mol–1)
    Ecoh
    /(kJ·mol–1)
    Fe16 178.79 –7.51 –449.39
    Fe13Ti2Mo1 190.51 6.56 –16.52 –477.95
    Fe13Ti1Mo2 190.70 6.66 –10.73 –477.96
    Fe13Mn1Ti2 185.61 3.81 –15.48 –460.85
    Fe13Mn1Ti1Mo1 187.73 5.00 –10.40 –461.58
    Fe13Mn1Mo2 188.92 5.67 –5.37 –462.35
    Fe13Mn2Ti1 182.89 2.29 –9.53 –444.06
    Fe13Mn2Mo1 184.48 3.18 –4.58 –445.51
    Fe10Mn2Ti2Mo2 194.98 9.06 –12.97 –473.45
    DownLoad: CSV

    表 3  Fe16-x-y-zMnxTiyMozε, HformEcoh的正交试验分析

    Table 3.  Orthogonal test analysis of ε, Hform and Ecoh of Fe16-x-y-zMnxTiyMoz.

    指标 ε/% Hform/(kJ·mol–1) Ecoh/(kJ·mol–1)
    Mn Ti Mo Mn Ti Mo Mn Ti Mo
    K0 13.22 8.85 6.1 –34.76 –17.46 –32.53 –1405.30 –1357.24 –1354.30
    K1 14.48 13.95 14.47 –31.25 –30.66 –31.50 –1384.78 –1383.60 –1385.04
    K2 14.53 19.43 21.39 –27.08 –44.97 –29.07 –1363.02 –1412.25 –1413.76
    R 1.31 10.58 15.29 7.68 27.51 3.46 42.28 55.01 59.46
    Ranking Mo>Ti>Mn Ti>Mn>Mo Mo>Ti>Mn
    DownLoad: CSV

    表 4  Fe16-x-y-zMnxTiyMoz的独立弹性常数和力学稳定性

    Table 4.  Independent elastic constants and mechanical stability of Fe16-x-y-zMnxTiyMoz.

    试样C11C12C44C11-C12C11+2C12
    Fe16296.273159.033126.763137.240614.339
    Fe13Ti2Mo1292.506158.281117.403134.225609.068
    Fe13Mn2Ti2Mo2293.869148.470116.251145.399590.809
    Fe13Ti1Mo2210.409103.67592.415106.734417.759
    Fe13Mn1Ti1Mo1291.402158.680123.704132.722608.762
    Fe13Mn1Ti2275.790150.536112.712125.254576.862
    DownLoad: CSV

    表 5  Fe16-x-y-zMnxTiyMoz的力学性能参数

    Table 5.  Mechanical property parameters of Fe16-x-y-zMnxTiyMoz.

    超胞 B/GPa G/GPa E/GPa K v HV
    BV BR BH GV GR GH
    Fe16 204.779 204.779 204.779 103.506 94.675 99.091 255.983 2.067 0.292 13.737
    Fe13Ti2Mo1 210.383 210.383 210.383 103.675 92.403 98.039 254.573 2.146 0.298 13.206
    Fe10Mn2Ti2Mo2 196.401 196.401 196.401 98.830 91.632 95.231 245.942 2.062 0.291 13.272
    Fe13Ti1Mo2 202.961 202.961 202.961 97.287 90.163 93.725 243.667 2.165 0.300 12.496
    Fe13Mn1Ti1Mo1 202.921 202.921 202.921 100.767 91.929 96.348 249.548 2.106 0.295 13.168
    Fe13Mn1Ti2 192.287 192.287 192.287 92.678 85.395 89.036 231.393 2.159 0.299 11.933
    DownLoad: CSV
    Baidu
  • [1]

    刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋 2017 66 107501Google Scholar

    Liu Q Y, Luo X, Zhu H Y, Han Y W, Liu J X 2017 Acta Phys. Sin. 66 107501Google Scholar

    [2]

    杨宇贤, 王镇华, 王清, 唐才宇, 万鹏, 曹达华, 董闯 2025 74 058101Google Scholar

    Yang Y X, Wang Z H, Wang Q, Tang C Y, Wan P, Cao D H, Dong C 2025 Acta Phys. Sin. 74 058101Google Scholar

    [3]

    段修刚, 蔡庆伍, 武会宾 2011 金属学报 47 251

    Duan X G, Cai Q W, Wu H B 2011 Acta Metall Sin. 47 251

    [4]

    Zhu Y Y, Ning L K, Duan C H, Liu E Z, Tong J, Tan Z, Li H Y, Zhao L, Wang Z R, Zheng Z 2025 Rare Metal Materials and Engineering. 51 1845 [祝洋洋, 宁礼奎, 段超辉, 刘恩泽, 佟健, 谭政, 李海英, 赵磊, 王增睿, 郑志 2025 稀有金属与材料 51 1845]

    Zhu Y Y, Ning L K, Duan C H, Liu E Z, Tong J, Tan Z, Li H Y, Zhao L, Wang Z R, Zheng Z 2025 Rare Metal Materials and Engineering. 51 1845

    [5]

    王坤, 徐鹤嫣, 郑雄, 张海丰 2025 74 137101Google Scholar

    Wang K, Xu H Y, Zheng X, Zhang H F 2025 Acta Phys. Sin. 74 137101Google Scholar

    [6]

    Qiu S H, Xiao Q Q, Tang H Z, Xie Q 2024 Chin. J. Inorg. Chem. 40 2250

    [7]

    丁璨, 王成豪, 张露露, 孙华斌, 田浩博, 刘骐诺 2025 稀有金属 49 389

    Ding C, Wang C H, Zhang L L, Sun H B, Tian H B, Liu Q N 2025 Chin. J. Rare Metals 49 389

    [8]

    Ito K, Sawada H, Ogata S 2019 Phys. Rev. Mater. 3 013609Google Scholar

    [9]

    Zhang H, Sun M, Liu Y, Ma D, Xu B, Huang M X, Li D Z, Li Y 2021 Acta Mater. 211 116878Google Scholar

    [10]

    Uemori R, Chijiiwa R, Tamehiro H 1994 Appl. Surf. Sci. 76 255

    [11]

    Guo X, Zhou J T, Zhang X X, Yang P, Ren J Q, Lu X F 2022 Comp. Mater. Sci. 214 111673Google Scholar

    [12]

    Li K M, Schuler T, Fu CC, Nastar M 2024 Acta Mater. 281 120355Google Scholar

    [13]

    Neugebauer J, Hickel T 2013 Wires Comput. Mol. Sci. 3 438Google Scholar

    [14]

    Singh A, Wang J, Henkelman G, Li L 2024 J. Chem. Theory Comput. 20 10022Google Scholar

    [15]

    Forslund A, Jung J H, Srinivasan P, Grabowski B 2023 Phys. Rev. B 107 174309Google Scholar

    [16]

    Fedorov M, Wróbel J S, Fernández-Caballero A, Kurzydłowski K J, Nguyen-Manh D 2020 Phys. Rev. B 101 174416Google Scholar

    [17]

    Wang H Y, Hu Q K, Yang W P, Li X S 2025 Acta Phys. Sin. 65 077101 [王海燕, 胡前库, 杨文朋, 李旭升 2025 65 077101]

    Wang H Y, Hu Q K, Yang W P, Li X S 2025 Acta Phys. Sin. 65 077101

    [18]

    Błachowski A, Ruebenbauer K, Żukrowski J 2009 J. Alloys Compd. 482 23Google Scholar

    [19]

    Medvedeva N I, Park M S, Van Aken D C, Medvedeva J E 2014 J. Alloys Compd. 582 475Google Scholar

    [20]

    Hao P D, Chen P, Deng L, Li F X, Yi J H, Şopu D, Eckert J, Tao J M, Liu Y C, Bao R 2020 J. Mater. Res. Technol. 9 3488Google Scholar

    [21]

    Toriyama M Y, Ganose A M, Dylla M, Anand S, Park J, Brod M K, Munro J M, Persson K A, Jain A, Snyder G J 2022 Mater. Today Electron. 1 100002Google Scholar

    [22]

    Zhao W B, Guo E J, Zhang K, Tian X H, Tan C L 2021 Scripta Mater. 199 113863Google Scholar

    [23]

    Hu Y J, Shang S L, Wang Y, Darling K A, Butler B G, Kecskes L J, Liu Z K 2016 J. Alloys Compd. 671 267Google Scholar

    [24]

    Luo Y H 2022 Materials 15 5656Google Scholar

    [25]

    Nasir M T, Hadi M A, Rayhan M A, Ali M A, Hossain M M, Roknuzzaman M, Naqib S H, Islam A K M A, Uddin M M, Ostrikov K 2017 Phys. Status Solidi (b) 254 1700336Google Scholar

    [26]

    Li H, Wang Z J, Sun G D, Yu P F, Zhang W X 2016 Solid State Commun. 237 24

    [27]

    Ye D 2005 Mater. Chem. Phys. 93 495Google Scholar

    [28]

    Wang G, Schönecker S, Hertzman S, Hu Q M, Johansson B, Kwon S K, Vitos L 2015 Phys. Rev. B 91 224203Google Scholar

    [29]

    Lee C, Song G, Gao M C, Feng R, Chen P, Brechtl J, Chen Y, An K, Guo W, Poplawsky J D, Li S, Samaei A T, Chen W, Hu A, Choo H, Liaw P K 2018 Acta Mater. 160 158Google Scholar

Metrics
  • Abstract views:  465
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  04 August 2025
  • Accepted Date:  24 September 2025
  • Available Online:  14 October 2025
  • /

    返回文章
    返回
    Baidu
    map