Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Honeycomb-like superlattice pattern in dielectric barrier discharge

LI Yaohua YAN Zhaohe YAN Zhihao LI Cheng PAN Yuyang DONG Lifang

Citation:

Honeycomb-like superlattice pattern in dielectric barrier discharge

LI Yaohua, YAN Zhaohe, YAN Zhihao, LI Cheng, PAN Yuyang, DONG Lifang
cstr: 32037.14.aps.74.20250952
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Patterns formed in dielectric barrier discharge is a typical nonlinear self-organization phenomenon. Research on the patterns helps elucidate the formation and evolution mechanisms of spatiotemporal structures in non-equilibrium systems, while also holding potential application value in fields such as material processing and plasma chemical engineering. A honeycomb superlattice pattern with an alternately-stretched honeycomb frame is observed in dielectric barrier discharge with a rectangular modulated gas gap for the first time and is studied both experimentally and theoretically. As the applied voltage increases, the pattern evolves from a hexagonal superlattice pattern with D6h symmetry to a quasi honeycomb superlattice pattern with D2h symmetry. Experimentally, the spatiotemporal structures of these two patterns are measured using an intensified charge coupled device (ICCD) and two photomultiplier tubes (PMTs). It is found that the hexagonal sublattice in the honeycomb superlattice pattern is divided into two sublattices, including a large stripe sublattice and a small stripe lattice. Additionally, the honeycomb frame sublattice is alternately-stretched. Discharges occur during both the rising and falling edges of the applied voltage. Through the estimation of the wall charge quantities of the two types of honeycomb frames and the analysis of the influence of boundaries on pattern formation, it is found that the quasi honeycomb superlattice pattern emerges as a self-organized structure under the influence of gas gap symmetry. Theoretically, the Poisson equation is numerically solved using COMSOL Multiphysics to simulate the electric field of the alternately-stretched honeycomb frame before and after discharge during the rising phase of the applied voltage. The result well explains the experimental phenomenon and provides the formation mechanism of the alternately-stretched honeycomb frame.
      Corresponding author: DONG Lifang, donglfhbu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12075075), the Central Government Guiding Local Science and Technology Development Fund (Grant No. 246Z7607G), the Foundation of President of Hebei University, China (Grant No. XZJJ202317), and the Excellent Youth Research Innovation Team of Hebei University, China (Grant No. QNTD202402).
    [1]

    Bánsági T, Vanag V K, Epstein I R 2011 Science 331 1309Google Scholar

    [2]

    Kameke A V, Huhn F, Muñuzuri A P, Pérez-Muñuzuri 2013 Phys. Rev. Lett. 110 088302Google Scholar

    [3]

    Rogers J L, Schatz M F, Brausch, Pesch W 2000 Phys. Rev. Lett. 85 4281Google Scholar

    [4]

    Perkins A C, Grigoriev R O, Schatz M F 2011 Phys. Rev. Lett. 107 064501Google Scholar

    [5]

    Cominotti R, Berti A, Farolfi A, Zenesini A, Lamporesi G, Carusotto I, Recati A, Ferrari G 2022 Phys. Rev. Lett. 128 210410Google Scholar

    [6]

    Frumkin V, Gokhale S 2023 Phys. Rev. E 108 012601Google Scholar

    [7]

    Bernecker B, Callegari T, Boeuf J P 2011 J. Phys. D: Appl. Phys. 44 262002Google Scholar

    [8]

    Shi H, Wang Y H, Wang D Z 2008 Phys. Plasmas 15 122306Google Scholar

    [9]

    McKay K, Donaghy D, He F, Bradley J W 2017 Plasma Sources Sci. Technol. 27 015002Google Scholar

    [10]

    Fan W L, Deng T K, Liu S, Liu R Q, He Y F, Liu Y H, Liu Y N, Liu F C 2025 Phys. Rev. E 111 024210Google Scholar

    [11]

    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1Google Scholar

    [12]

    Callegari T, Bernecker B, Boeuf J P 2014 Plasma Sources Sci. Technol. 23 054003Google Scholar

    [13]

    Boeuf J P 2003 J. Phys. D: Appl. Phys. 36 R53Google Scholar

    [14]

    Polonskyi O, Hartig T, Uzarski J R, Gordon M J 2021 Appl. Phys. Lett. 119 211601Google Scholar

    [15]

    Peng B F, Li J, Jiang N, Jiang Y, Chen Z Q, Lei Z P, Song J C 2024 Phys. Fluids 36 037144Google Scholar

    [16]

    Brauer I, Bode M, Ammelt E, Purwins H G 2000 Phys. Rev. Lett. 84 4104Google Scholar

    [17]

    Breazeal W, Flynn K M, Gwinn E G 1995 Phys. Rev. E 52 1503Google Scholar

    [18]

    Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 3817Google Scholar

    [19]

    Bernecker B, Callegari T, Blanco S, Fournier R, Boeuf J P 2009 Eur. Phys. J. Appl. Phys. 47 22808Google Scholar

    [20]

    Nie Q Y, Ren C S, Wang D Z, Li S Z, Zhang J L, Kong M G 2007 Appl. Phys. Lett. 90 221504Google Scholar

    [21]

    Dong L F, Mao Z G, Ran J X 2005 Chin. Phys. 14 1618Google Scholar

    [22]

    Dong L F, Li Y H, Qi X X, Fan W L, Li R, Liu S, Pan Y Y 2025 Opt. Express 33 37246Google Scholar

    [23]

    Dong L F, Zhang L J, He Y N, Wei T, Li Y H, Li C, Pan Y Y 2024 Appl. Phys. Lett. 125 104101Google Scholar

    [24]

    Liu F C, Liu Y N, Liu Q, Wu Z C, Liu Y H, Gao K Y, He Y F, Fan W L, Dong L F 2022 Plasma Sources Sci. Technol. 31 025015Google Scholar

    [25]

    Fan W L, Wang Q H, Li R, Deng T K, Wang S, Li Y H, He Y F, Chu L Z, Liu F C 2024 Appl. Phys. Lett. 124 121703Google Scholar

    [26]

    Duan X X, Ouyang J T, Zhao X F, He F 2009 Phys. Rev. E 80 016202Google Scholar

    [27]

    Feng J Y, Dong L F, Wei L Y, Fan W L, Li C X, Pan Y Y 2016 Phys. Plasmas 23 093502Google Scholar

    [28]

    卫婷, 董丽芳, 张立佳, 贺玉楠, 李耀华, 李骋, 潘宇扬 2024 中国科学: 物理学 力学 天文学 54 105211Google Scholar

    Wei T, Dong L F, Zhang L J, He Y N, Li Y H, Li C, Pan Y Y 2024 Sci. Sin. Phys. Mech. Astron. 54 105211Google Scholar

    [29]

    Dong L F, Fan W L, He Y F, Liu F C, Li S, Gao R L, Wang L 2006 Phys. Rev. E 73 066206Google Scholar

    [30]

    Dong L F, Liu W L, Wang H F, He Y F, Fan W L, Gao R L 2007 Phys. Rev. E 76 046210Google Scholar

    [31]

    Zhu P, Dong L F, Yang J, Gao Y N, Wang Y J, Li B 2015 Phys. Plasmas 22 023507Google Scholar

    [32]

    于广林, 董丽芳, 窦亚亚, 孙浩洋, 米彦霖 2018 发光学报 39 1527Google Scholar

    Yu G L, Dong L F, Dou Y Y, Sun H Y, Mi Y L 2018 Chin. J. Lumin. 39 1527Google Scholar

    [33]

    Li Y H, Wang Y, Pan Y Y, Tian M, Zhang J H, Dong L F 2024 Phys. Plasmas 31 033502Google Scholar

  • 图 1  实验装置图

    Figure 1.  Schematic diagram of the experimental setup.

    图 2  随着外加电压的增加斑图的演化序列 (a) 随机放电丝, U = 4.0 kV; (b) 蜂窝超点阵斑图, U = 4.9 kV; (c) 蜂窝框架加厚的蜂窝超点阵斑图, U = 5.3 kV; (d) 类蜂窝超点阵斑图, U = 5.6 kV; (e) 不稳定的蜂窝超点阵斑图, U = 5.8 kV; (f) 模糊条纹状, U = 6.4 kV; (g) 不同蜂窝斑图中蜂窝框架子点阵的示意图; (h) 斑图(a)—(f)的电压U与氩气含量φ的相图; (i) 类蜂窝超点阵斑图的气压p与氩气含量φ的相图

    Figure 2.  Transition of the pattern with the applied voltage increasing: (a) Random discharge filament, U = 4.0 kV; (b) honeycomb superlattice pattern, U = 4.9 kV; (c) honeycomb superlattice pattern with thicker honeycomb frame, U = 5.3 kV; (d) quasi honeycomb superlattice pattern, U = 5.6 kV; (e) unstable honeycomb superlattice pattern, U = 5.8 kV; (f) vague stripe, U = 6.4 kV; (g) schematic diagram of the sublattice of the honeycomb frame in different honeycomb patterns; (h) the phase diagram of the patterns in evolution sequence as a function of the voltage U and argon concentration φ shown in panel (a)–(f); (i) the phase diagram of quasi honeycomb superlattice pattern as a function of the gas pressure p and argon concentration φ.

    图 3  类蜂窝超点阵斑图的瞬时照片 (a) 斑图的电压电流波形图(Δt1 = 1440 ns, Δt2 = 640 ns); (b), (c) 分别对应曝光时间为Δt1和Δt2的染色叠加100个电压周期的瞬时照片; (d) 图(b)和图(c)的叠加图

    Figure 3.  Instantaneous images of the quasi honeycomb superlattice pattern: (a) Waveforms of the voltage and the current (Δt1 = 1440 ns, Δt2 = 640 ns); (b), (c) images exposed corresponding to the current pulse phases denoted by Δt1 and Δt2 in panel (a), respectively, and the images are integrated for 100 voltage cycles; (d) superposition of panels (b), (c).

    图 4  类蜂窝超点阵斑图中不同子结构的时空相关性测量 (a) 类蜂窝超点阵斑图; (b), (c) F和S、B和S的时间相关性测量; (d) 斑图时空结构示意图

    Figure 4.  Spatiotemporal correlation measurement of different substructures in a quasi honeycomb superlattice pattern: (a) Quasi honeycomb superlattice pattern; (b), (c) measurement of the temporal correlation between F and S, B and S; (d) schematic diagram of the spatial and temporal structure of the pattern.

    图 5  蜂窝超点阵斑图的瞬时照片 (a) 斑图的电压电流波形图(Δt1 = 560 ns, Δt2 = 2000 ns); (b), (c) 分别对应曝光时间为Δt1和Δt2的染色叠加100个电压周期的瞬时照片; (d) 图(b)和(c)的叠加图

    Figure 5.  Instantaneous images of the honeycomb superlattice pattern: (a) Waveforms of the voltage and the current (Δt1 = 560 ns, Δt2 = 2000 ns); (b), (c) images exposed corresponding to the current pulse phases denoted by ∆t1 and ∆t2 in (a), respectively, and the images are integrated for 100 voltage cycles; (d) superposition of panels (b), (c).

    图 6  (a1), (b1) 蜂窝超点阵斑图及其电压电流波形图; (a2), (b2) 类蜂窝超点阵斑图及其电压电流波形图

    Figure 6.  (a1), (b1) Honeycomb superlattice pattern and its voltage and current waveforms diagram; (a2), (b2) quasi honeycomb superlattice pattern and its voltage and current waveforms diagram.

    图 7  隔列拉伸的蜂窝框架放电前后的电场分布 (a) 放电前; (b) 放电后

    Figure 7.  Electric field distribution of the alternately-stretched honeycomb frame before and after discharge: (a) Before discharging; (b) after discharging.

    Baidu
  • [1]

    Bánsági T, Vanag V K, Epstein I R 2011 Science 331 1309Google Scholar

    [2]

    Kameke A V, Huhn F, Muñuzuri A P, Pérez-Muñuzuri 2013 Phys. Rev. Lett. 110 088302Google Scholar

    [3]

    Rogers J L, Schatz M F, Brausch, Pesch W 2000 Phys. Rev. Lett. 85 4281Google Scholar

    [4]

    Perkins A C, Grigoriev R O, Schatz M F 2011 Phys. Rev. Lett. 107 064501Google Scholar

    [5]

    Cominotti R, Berti A, Farolfi A, Zenesini A, Lamporesi G, Carusotto I, Recati A, Ferrari G 2022 Phys. Rev. Lett. 128 210410Google Scholar

    [6]

    Frumkin V, Gokhale S 2023 Phys. Rev. E 108 012601Google Scholar

    [7]

    Bernecker B, Callegari T, Boeuf J P 2011 J. Phys. D: Appl. Phys. 44 262002Google Scholar

    [8]

    Shi H, Wang Y H, Wang D Z 2008 Phys. Plasmas 15 122306Google Scholar

    [9]

    McKay K, Donaghy D, He F, Bradley J W 2017 Plasma Sources Sci. Technol. 27 015002Google Scholar

    [10]

    Fan W L, Deng T K, Liu S, Liu R Q, He Y F, Liu Y H, Liu Y N, Liu F C 2025 Phys. Rev. E 111 024210Google Scholar

    [11]

    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1Google Scholar

    [12]

    Callegari T, Bernecker B, Boeuf J P 2014 Plasma Sources Sci. Technol. 23 054003Google Scholar

    [13]

    Boeuf J P 2003 J. Phys. D: Appl. Phys. 36 R53Google Scholar

    [14]

    Polonskyi O, Hartig T, Uzarski J R, Gordon M J 2021 Appl. Phys. Lett. 119 211601Google Scholar

    [15]

    Peng B F, Li J, Jiang N, Jiang Y, Chen Z Q, Lei Z P, Song J C 2024 Phys. Fluids 36 037144Google Scholar

    [16]

    Brauer I, Bode M, Ammelt E, Purwins H G 2000 Phys. Rev. Lett. 84 4104Google Scholar

    [17]

    Breazeal W, Flynn K M, Gwinn E G 1995 Phys. Rev. E 52 1503Google Scholar

    [18]

    Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 3817Google Scholar

    [19]

    Bernecker B, Callegari T, Blanco S, Fournier R, Boeuf J P 2009 Eur. Phys. J. Appl. Phys. 47 22808Google Scholar

    [20]

    Nie Q Y, Ren C S, Wang D Z, Li S Z, Zhang J L, Kong M G 2007 Appl. Phys. Lett. 90 221504Google Scholar

    [21]

    Dong L F, Mao Z G, Ran J X 2005 Chin. Phys. 14 1618Google Scholar

    [22]

    Dong L F, Li Y H, Qi X X, Fan W L, Li R, Liu S, Pan Y Y 2025 Opt. Express 33 37246Google Scholar

    [23]

    Dong L F, Zhang L J, He Y N, Wei T, Li Y H, Li C, Pan Y Y 2024 Appl. Phys. Lett. 125 104101Google Scholar

    [24]

    Liu F C, Liu Y N, Liu Q, Wu Z C, Liu Y H, Gao K Y, He Y F, Fan W L, Dong L F 2022 Plasma Sources Sci. Technol. 31 025015Google Scholar

    [25]

    Fan W L, Wang Q H, Li R, Deng T K, Wang S, Li Y H, He Y F, Chu L Z, Liu F C 2024 Appl. Phys. Lett. 124 121703Google Scholar

    [26]

    Duan X X, Ouyang J T, Zhao X F, He F 2009 Phys. Rev. E 80 016202Google Scholar

    [27]

    Feng J Y, Dong L F, Wei L Y, Fan W L, Li C X, Pan Y Y 2016 Phys. Plasmas 23 093502Google Scholar

    [28]

    卫婷, 董丽芳, 张立佳, 贺玉楠, 李耀华, 李骋, 潘宇扬 2024 中国科学: 物理学 力学 天文学 54 105211Google Scholar

    Wei T, Dong L F, Zhang L J, He Y N, Li Y H, Li C, Pan Y Y 2024 Sci. Sin. Phys. Mech. Astron. 54 105211Google Scholar

    [29]

    Dong L F, Fan W L, He Y F, Liu F C, Li S, Gao R L, Wang L 2006 Phys. Rev. E 73 066206Google Scholar

    [30]

    Dong L F, Liu W L, Wang H F, He Y F, Fan W L, Gao R L 2007 Phys. Rev. E 76 046210Google Scholar

    [31]

    Zhu P, Dong L F, Yang J, Gao Y N, Wang Y J, Li B 2015 Phys. Plasmas 22 023507Google Scholar

    [32]

    于广林, 董丽芳, 窦亚亚, 孙浩洋, 米彦霖 2018 发光学报 39 1527Google Scholar

    Yu G L, Dong L F, Dou Y Y, Sun H Y, Mi Y L 2018 Chin. J. Lumin. 39 1527Google Scholar

    [33]

    Li Y H, Wang Y, Pan Y Y, Tian M, Zhang J H, Dong L F 2024 Phys. Plasmas 31 033502Google Scholar

  • [1] RAN Junxia, ZHANG Han, CHEN Qinyi, ZHOU Yixun, SU Tong, LI Qing, LI Xuechen. Discharge evolution mechanism and spectral diagnostic study of loop dot-matrix concentric-roll pattern. Acta Physica Sinica, 2025, 74(18): 185202. doi: 10.7498/aps.74.20250737
    [2] TIAN Shuang, ZHANG Han, ZHANG Xi, ZHANG Xuexue, LI Xuechen, LI Qing, RAN Junxia. Discharge characteristics and parameter diagnosis of dielectric barrier discharge patterns in double-gap configuration. Acta Physica Sinica, 2025, 74(11): 115202. doi: 10.7498/aps.74.20250111
    [3] LI Cheng, YAN Zhihao, QI Xiaoxiu, LI Yuxin, PAN Yuyang, DONG Lifang. D2h superlattice patterns in dielectric barrier discharge with striped water electrode. Acta Physica Sinica, 2025, 74(22): 225202. doi: 10.7498/aps.74.20250985
    [4] Guo Hui, Wang Ya-Jun, Wang Lin-Xue, Zhang Xiao-Fei. Dynamics of ring dark solitons in Bose-Einstein condensates. Acta Physica Sinica, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [5] Liu Wei-Bo, Dong Li-Fang. Formation mechanism of concentric-ring pattern in dielectric barrier discharge. Acta Physica Sinica, 2015, 64(24): 245202. doi: 10.7498/aps.64.245202
    [6] Wang Rong, Wu Ying, Liu Shao-Bao. Effect of ion channel random blocking on the spatiotemporal dynamics of neuronal network. Acta Physica Sinica, 2013, 62(22): 220504. doi: 10.7498/aps.62.220504
    [7] Li Xue-Chen, Liu Run-Fu, Jia Peng-Ying, Kong Liu-Qing. Experimental investigation on the formation of stripe pattern in flowing argon discharge system. Acta Physica Sinica, 2012, 61(11): 115205. doi: 10.7498/aps.61.115205
    [8] Chen Jun-Ying, Dong Li-Fang, Li Yuan-Yuan, Song Qian, Ji Ya-Fei. Plasma parameters of square superlattice pattern in a dielectric barrier discharge. Acta Physica Sinica, 2012, 61(7): 075211. doi: 10.7498/aps.61.075211
    [9] He Ya-Feng, Feng Xiao-Min, Zhang Liang. Control of the spatiotemporal pattern with time delayed feedback in a gas discharge system. Acta Physica Sinica, 2012, 61(24): 245204. doi: 10.7498/aps.61.245204
    [10] Dong Li-Fang, Yue Han, Fan Wei-Li, Li Yuan-Yuan, Yang Yu-Jie, Xiao Hong. Target patterns obtained by suddenly increasing applied voltage in dielectric barrier discharge. Acta Physica Sinica, 2011, 60(6): 065206. doi: 10.7498/aps.60.065206
    [11] Dong Li-Fang, Xie Wei-Xia, Zhao Hai-Tao, Fan Wei-Li, He Ya-Feng, Xiao Hong. Experimental study on self-organized hexagonal superlattice pattern in dielectric barrier discharge in argon/air. Acta Physica Sinica, 2009, 58(7): 4806-4811. doi: 10.7498/aps.58.4806
    [12] Dong Li-Fang, Zhao Hai-Tao, Xie Wei-Xia, Wang Hong-Fang, Liu Wei-Li, Fan Wei-Li, Xiao Hong. Experimental investigation of square superlattice pattern formation in a dielectric barrier discharge. Acta Physica Sinica, 2008, 57(9): 5768-5773. doi: 10.7498/aps.57.5768
    [13] Fan Wei-Li, Dong Li-Fang, Li Xue-Chen, Yin Zeng-Qian, He Ya-Feng, Liu Shu-Hua. Study on the properties of the square pattern in Air/Ar dielectric barrier discharge. Acta Physica Sinica, 2007, 56(3): 1467-1470. doi: 10.7498/aps.56.1467
    [14] Dong Li-Fang, Liu Shu-Hua, Wang Hong-Fang, Fan Wei-Li, Gao Rui-Ling, Hao Ya-Juan. Two kinds of hexagon emission patterns with different spatio-temporal symmetry in dielectric barrier discharge. Acta Physica Sinica, 2007, 56(6): 3332-3336. doi: 10.7498/aps.56.3332
    [15] Dong Li-Fang, Gao Rui-Ling, He Ya-Feng, Fan Wei-Li, Li Xue-Chen, Liu Shu-Hua, Liu Wei-Li. Study on the interaction of microdischarge channels in dielectric barrier discharge pattern. Acta Physica Sinica, 2007, 56(3): 1471-1475. doi: 10.7498/aps.56.1471
    [16] Dong Li-Fang, Li Shu-Feng, Liu Feng, Liu Fu-Cheng, Liu Shu-Hua, Fan Wei-Li. Square and hexagon pattern formation in dielectric barrier discharge in argon at atmospheric pressure. Acta Physica Sinica, 2006, 55(1): 362-366. doi: 10.7498/aps.55.362
    [17] Dong Li-Fang, Mao Zhi-Guo, Ran Jun-Xia. Study on the electrical characteristic of different modes of dielectric barrier discharge in argon. Acta Physica Sinica, 2005, 54(7): 3268-3272. doi: 10.7498/aps.54.3268
    [18] Zhang Yuan-Tao, Wang De-Zhen, Wang Yan-Hui. Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure. Acta Physica Sinica, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [19] Yin Zeng-Qian, Wang Long, Dong Li-Fang, Li Xue-Chen, Chai Zhi-Fang. The mapping equation of micro-discharge in dielectric barrier discharges. Acta Physica Sinica, 2003, 52(4): 929-934. doi: 10.7498/aps.52.929
    [20] Dong Li-Fang, Li Xue-Chen, Yin Zeng-Qian, Wang Long. . Acta Physica Sinica, 2002, 51(10): 2296-2301. doi: 10.7498/aps.51.2296
Metrics
  • Abstract views:  486
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  18 July 2025
  • Accepted Date:  18 September 2025
  • Available Online:  26 September 2025
  • Published Online:  20 November 2025
  • /

    返回文章
    返回
    Baidu
    map