搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环-点阵-同心环斑图的放电演化机理及光谱诊断研究

冉俊霞 张寒 陈沁怡 周奕汛 苏彤 李庆 李雪辰

引用本文:
Citation:

环-点阵-同心环斑图的放电演化机理及光谱诊断研究

冉俊霞, 张寒, 陈沁怡, 周奕汛, 苏彤, 李庆, 李雪辰

Discharge evolution mechanism and spectral diagnostic study of loop dot-matrix concentric-roll pattern

RAN Junxia, ZHANG Han, CHEN Qinyi, ZHOU Yixun, SU Tong, LI Qing, LI Xuechen
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本工作在氩气/空气混合气体介质阻挡放电系统中, 利用不同半径的圆形边界叠加形成薄厚组合放电气隙, 通过改变外加电压, 获得同心环斑图、环-点阵-同心环斑图、靶波斑图、蜂窝斑图, 并分析研究了几种斑图的电学特性和光学特性. 利用增强型电耦合设备(intensified charge-coupled device, ICCD)重点研究了环-点阵-同心环斑图的时空演化行为, 对该斑图的形成机理进行了理论分析. 结果表明, 该放电斑图在径向上具有从外向内逐渐点亮的发展过程, 这与薄气隙对放电的预电离作用有关. 对该斑图径向上不同放电细丝的发射光谱进行了采集分析, 并对其等离子体参数进行了空间分辨诊断. 实验发现, 薄气隙中分子振动温度、电子密度及电子温度比厚气隙中大得多. 在厚气隙中沿径向从内到外其分子振动温度、电子密度、电子温度逐渐增加, 但数值变化较小; 薄气隙离圆心更远处的分子振动温度、电子密度、电子温度反而变小, 这与气隙中电场的微变化相关.
    Dielectric barrier discharge (DBD) can produce abundant discharge patterns. It is one of the most interesting nonlinear systems for studying pattern formation. In this work, circular boundaries with different radii are utilized and superimposed to form a narrow and wide combined discharge gap. The pressure is set to 25 kPa for the experiment, and the frequency is fixed at 58 kHz. By varying the applied voltage, concentric-roll pattern, loop dot-matrix concentric-roll pattern, target-wave pattern and honeycomb pattern are obtained. The electrical and optical properties of several types of patterns are analyzed. This study focuses on the spatiotemporal evolution of the loop dot-matrix concentric-roll patterns by using an intensified charge-coupled device (ICCD), and theoretically analyzes the formation mechanism of these patterns. The results show that the discharge pattern has a radial development with a gradual breakdown process from the outside to the inside. It is related to the pre-ionization effect of the narrow gap on the discharge. The emission spectra of different discharged filaments in the radial direction of loop dot-matrix concentric-roll pattern are measured and analyzed. A spatially resolved diagnosis of plasma parameters is performed. It is found that the molecular vibrational temperature, electron density, and electron temperature are much larger in narrow gap than those in wide gap. In the wide gap, the molecular vibration temperature, electron density, and electron temperature gradually increase along the radial direction from the inside to the outside, but the changes are relatively small. In the narrow gap, the parameters such as the molecular vibration temperature, electron density, and electron temperature far from the center of the circle are smaller than those near the center of the circle. This is related to the micro-change of the electric field.
  • 图 1  (a) 实验装置示意图; (b) 气隙结构侧视图

    Fig. 1.  (a) Schematic diagram of the experimental setup; (b) side view of the gap structure.

    图 2  随着施加电压的增大, 实验观察到不同的等离子体结构 (a) 同心环斑图; (b)—(d) 环-点阵-同心环斑图; (e) 靶波斑图; (f) 蜂窝斑图

    Fig. 2.  Experimental observations of different plasma structures as the applied voltage increases: (a) concentric-roll pattern; (b)–(d) loop dot-matrix concentric-roll pattern; (e) target-wave pattern; (f) honeycomb pattern.

    图 3  LDC斑图的相图与氩气气体浓度的函数关系 (a) 施加电压; (b) 气体压力

    Fig. 3.  Phase diagram of the LDC pattern as a function of Ar concentration: (a) Applied voltage; (b) gas pressure.

    图 4  不同斑图对应的电压与放电电流的波形图

    Fig. 4.  Waveforms of applied voltage and discharge current for different patterns.

    图 5  LDC Ⅲ斑图的时间演化, 其中电流波形图(a)中标示了各幅图((b)—(k))对应的ICCD拍摄时刻, 曝光时间为50 ns (单次拍摄)

    Fig. 5.  Temporal evolution of the LDC Ⅲ pattern: current waveform (a) shows the ICCD shooting time of each picture ((b)–(k)), and the exposure time is 50 ns (single shot).

    图 6  (a) 薄气隙对应的等效电路图; (b) 厚气隙对应的等效电路图; (c) 外加电场仿真结果

    Fig. 6.  (a) Equivalent circuit diagram of the narrow gap; (b) equivalent circuit diagram of the wide gap; (c) simulation results of applied electric field.

    图 7  LDC Ⅲ斑图在300—800 nm放电的发射光谱

    Fig. 7.  300 nm to 800 nm scanned spectrum emitted from the LDC Ⅲ pattern.

    图 8  分子振动温度和谱线强度比随距中心点距离的变化

    Fig. 8.  Molecular vibrational temperature and intensity ratio as a function of the distance from the center.

    Baidu
  • [1]

    Navratil Z, Brandenburg R, Trunec D, Brablec A, St’ahel P, Wagner H E, Kopecky Z 2006 Plasma Sources Sci. Technol. 15 8Google Scholar

    [2]

    Li J Y, Zhou D S, Rebrov E, Tang X, Kim M 2024 J. Phys. D: Appl. Phys. 57 395201Google Scholar

    [3]

    Dong L F, Mi Y L, Pan Y Y 2020 Phys. Plasmas 27 023504Google Scholar

    [4]

    Zhao X E, Hao W R 2024 Math. Biosci. 374 109222Google Scholar

    [5]

    Floyd C, Dinner A R, Vaikuntanathan S 2024 Phys. Rev. Res. 6 033100Google Scholar

    [6]

    Reyes L I, Pérez L M, Pedraja-Rejas L, Díaz P, Mendoza J, Bragard J, Clerc M G, Laroze D 2024 Chaos Soliton. Fract. 186 115244Google Scholar

    [7]

    Nath R, Santos L 2010 Phys. Rev. 81 033626Google Scholar

    [8]

    Otsuka K 1989 Opt. Lett. 14 925Google Scholar

    [9]

    Vorontsov M A, Firth W J 1994 Phys. Rev. A 49 2891Google Scholar

    [10]

    Thomas M, Borris J, Dohse A, Eichler M, Hinze A, Lachmann K, Nagel K, Klages C P 2012 Plasma Process. Polym. 9 1086Google Scholar

    [11]

    万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧 2020 69 145203Google Scholar

    Wang H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203Google Scholar

    [12]

    Feng J Y, Pan Y Y, Li C X, Liu B B, Dong L F 2020 Phys. Plasmas 27 063516Google Scholar

    [13]

    Bhoj A N, Kolobov V I 2011 IEEE Trans. Plasma Sci. 39 2152Google Scholar

    [14]

    Duan X X, Xu S W, Liu J, He F, Ouyang J T 2011 IEEE Trans. Plasma Sci. 39 2074Google Scholar

    [15]

    Zhang J, Wang Y H, Wang D Z 2015 Phys. Plasmas 22 043517Google Scholar

    [16]

    Li X C, Liu R, Jia P Y, Wu K Y, Ren C H, Yin Z Q 2018 Phys. Plasmas 25 013512Google Scholar

    [17]

    Li Z Y, Jin S H, Xian Y B, Nie L L, Liu D W, Lu X P 2021 Plasma Sources Sci. Technol. 30 065026Google Scholar

    [18]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003Google Scholar

    [19]

    Zhang J H, Pan Y Y, Feng J Y, He Y N, Chu J H, Dong L F 2023 Plasma Sci. Technol. 25 025406Google Scholar

    [20]

    Noma Y, Choi J H, Stauss S, Tomai T, Terashima K 2008 Appl. Phys. Express 1 046001Google Scholar

    [21]

    Dong L F, Ran J X, Mao Z G 2005 Appl. Phys. Lett. 86 161501Google Scholar

    [22]

    Feng J Y, Dong L F, Wei L Y, Fan W L, Li C X, Pan Y Y 2016 Phys. Plasmas 23 093502Google Scholar

    [23]

    Li Y H, Wang Y, Pan Y Y, Tian M, Zhang J H, Dong L F 2024 Phys. Plasmas 31 033502Google Scholar

    [24]

    Zhu P, Dong L F, Yang J, Gao Y N, Wang Y J, Li B 2015 Phys. Plasmas 22 023507Google Scholar

    [25]

    Dong L F, Shang J, Song Q, Fan W L, Ji Y F 2012 IEEE Trans. Plasma Sci. 40 1162Google Scholar

    [26]

    Liu W B, Dong L F, Wang Y J, Zhang H, Pan Y Y 2016 Phys. Plasmas 23 082307Google Scholar

    [27]

    Fan W L, Jia M M, Zhu P L, Liu C Y, Hou X H, Zhang J F, He Y F, Liu F C 2022 APL Photon. 7 116105Google Scholar

    [28]

    Guo L T, Pan Y Y, Yu G L, Wang Z Y, Gao K Y, Fan W L, Dong L F 2023 Plasma Sci. Technol. 25 085501Google Scholar

    [29]

    Demaude A, Baert K, Petitjean D, Zveny J, Goormaghtigh E, Hauffman T, Gordon M J, Reniers F 2022 Adv. Sci. 9 2200237Google Scholar

    [30]

    Yang L Z, Liu Z W, Mao Z G, Li S, Chen Q 2017 Jpn. J. Appl. Phys. 56 01AC02Google Scholar

    [31]

    董丽芳, 朱平, 杨京, 李犇 2015 高电压技术 41 2856

    Dong L F, Zhu P, Yang J, Li B 2015 High Volt. Eng. 41 2856

    [32]

    Bernecker B, Callegari T, Blanco S, Fournier R, Boeuf J P 2009 Eur. Phys. J. Appl. Phys. 47 22808Google Scholar

    [33]

    Sun H Y, Dong L F, Liu F C, Mi Y L, Han R, Huang J Y, Liu B B, Hao F, Pan Y Y 2018 Phys. Plasmas 25 113507Google Scholar

    [34]

    Yu G L, Dong L F, Dou Y Y, Mi Y L, Liu B B, Li C X, Pan Y Y 2019 Phys. Plasmas 26 023507Google Scholar

    [35]

    Dong L F, Lu N, Shang J, Liu L, Li X C 2011 IEEE Trans. Plasma Sci. 39 2156Google Scholar

    [36]

    Dong L F, Liu W B, Wang Y J, Zhang X P 2014 IEEE Trans. Plasma Sci. 42 2Google Scholar

    [37]

    Duan X X, He F, Ouyang J T 2012 Plasma Sources Sci. Technol. 21 015008Google Scholar

    [38]

    Li C X, Feng J Y, Wang SC, Li C, Ran J X, Pan Y Y, Dong L F 2024 Plasma Sci. Technol. 26 085401Google Scholar

    [39]

    Yao J X, Miao J S, Li J X, Lian X Y, Ouyang J T 2023 Appl. Phys. Lett. 122 082905Google Scholar

    [40]

    冉俊霞, 罗海云, 王新新 2011 高电压技术 37 1486

    Ran J X, Luo H Y, Wang X X 2011 High Volt. Eng. 37 1486

    [41]

    Liu S H, Neiger M 2003 J. Phys. D: Appl. Phys. 36 3144Google Scholar

    [42]

    Liu J, Yang Y, Nie L, Liu D, Lu X 2024 J. Phys. D: Appl. Phys. 57 275201Google Scholar

    [43]

    Zhao N, Wu K Y, He X R, Chen J Y, Tan X, Wu J C, Ran J X, Jia P Y, Li X C 2022 J. Phys. D: Appl. Phys. 55 015203Google Scholar

    [44]

    Wu K Y, Wu J C, Jia B Y, Ren C H, Kang P C, Jia P Y, Li X C 2020 Phys. Plasmas 27 082308Google Scholar

  • [1] 田爽, 张寒, 张喜, 张雪雪, 李雪辰, 李庆, 冉俊霞. 双气隙下介质阻挡放电斑图的放电特性与参数诊断.  , doi: 10.7498/aps.74.20250111
    [2] 刘在浩, 刘颖华, 许博坪, 尹培琪, 李静, 王屹山, 赵卫, 段忆翔, 汤洁. 大气压氦气预电离直流辉光放电二维仿真研究.  , doi: 10.7498/aps.73.20230712
    [3] 肖江平, 戴栋, Victor F. Tarasenko, 邵涛. 大气压空气纳秒脉冲板-板放电中逃逸电子产生机理.  , doi: 10.7498/aps.72.20222409
    [4] 万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧. 大气压氦气介质阻挡放电单-多柱演化动力学.  , doi: 10.7498/aps.69.20200473
    [5] 程钰锋, 聂万胜, 车学科, 田希晖, 侯志勇, 周鹏辉. 不同压力下介质阻挡放电等离子体诱导流场演化的实验研究.  , doi: 10.7498/aps.62.104702
    [6] 董丽芳, 李树峰, 范伟丽. 介质阻挡放电丝结构转变中的缺陷研究.  , doi: 10.7498/aps.60.065205
    [7] 董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红. 介质阻挡放电跃变升压模式下靶波斑图研究.  , doi: 10.7498/aps.60.065206
    [8] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究.  , doi: 10.7498/aps.59.8747
    [9] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红. 氩气/空气介质阻挡放电自组织超六边形斑图实验研究.  , doi: 10.7498/aps.58.4806
    [10] 董丽芳, 王红芳, 刘微粒, 贺亚峰, 刘富成, 刘书华. 介质阻挡放电中电介质参量对放电时间特性的影响.  , doi: 10.7498/aps.57.1802
    [11] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性.  , doi: 10.7498/aps.57.1001
    [12] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究.  , doi: 10.7498/aps.56.7078
    [13] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究.  , doi: 10.7498/aps.56.1471
    [14] 董丽芳, 刘书华, 王红芳, 范伟丽, 高瑞玲, 郝雅娟. 介质阻挡放电中两种不同时空对称性的六边形发光斑图.  , doi: 10.7498/aps.56.3332
    [15] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究.  , doi: 10.7498/aps.55.5969
    [16] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究.  , doi: 10.7498/aps.55.5923
    [17] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究.  , doi: 10.7498/aps.54.3268
    [18] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟.  , doi: 10.7498/aps.54.4808
    [19] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程.  , doi: 10.7498/aps.52.929
    [20] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构.  , doi: 10.7498/aps.51.2296
计量
  • 文章访问数:  350
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-06
  • 修回日期:  2025-07-14
  • 上网日期:  2025-07-21

/

返回文章
返回
Baidu
map