-
本工作在氩气/空气混合气体介质阻挡放电系统中, 利用不同半径的圆形边界叠加形成薄厚组合放电气隙, 通过改变外加电压, 获得同心环斑图、环-点阵-同心环斑图、靶波斑图、蜂窝斑图, 并分析研究了几种斑图的电学特性和光学特性. 利用增强型电耦合设备(intensified charge-coupled device, ICCD)重点研究了环-点阵-同心环斑图的时空演化行为, 对该斑图的形成机理进行了理论分析. 结果表明, 该放电斑图在径向上具有从外向内逐渐点亮的发展过程, 这与薄气隙对放电的预电离作用有关. 对该斑图径向上不同放电细丝的发射光谱进行了采集分析, 并对其等离子体参数进行了空间分辨诊断. 实验发现, 薄气隙中分子振动温度、电子密度及电子温度比厚气隙中大得多. 在厚气隙中沿径向从内到外其分子振动温度、电子密度、电子温度逐渐增加, 但数值变化较小; 薄气隙离圆心更远处的分子振动温度、电子密度、电子温度反而变小, 这与气隙中电场的微变化相关.Dielectric barrier discharge (DBD) can produce abundant discharge patterns. It is one of the most interesting nonlinear systems for studying pattern formation. In this work, circular boundaries with different radii are utilized and superimposed to form a narrow and wide combined discharge gap. The pressure is set to 25 kPa for the experiment, and the frequency is fixed at 58 kHz. By varying the applied voltage, concentric-roll pattern, loop dot-matrix concentric-roll pattern, target-wave pattern and honeycomb pattern are obtained. The electrical and optical properties of several types of patterns are analyzed. This study focuses on the spatiotemporal evolution of the loop dot-matrix concentric-roll patterns by using an intensified charge-coupled device (ICCD), and theoretically analyzes the formation mechanism of these patterns. The results show that the discharge pattern has a radial development with a gradual breakdown process from the outside to the inside. It is related to the pre-ionization effect of the narrow gap on the discharge. The emission spectra of different discharged filaments in the radial direction of loop dot-matrix concentric-roll pattern are measured and analyzed. A spatially resolved diagnosis of plasma parameters is performed. It is found that the molecular vibrational temperature, electron density, and electron temperature are much larger in narrow gap than those in wide gap. In the wide gap, the molecular vibration temperature, electron density, and electron temperature gradually increase along the radial direction from the inside to the outside, but the changes are relatively small. In the narrow gap, the parameters such as the molecular vibration temperature, electron density, and electron temperature far from the center of the circle are smaller than those near the center of the circle. This is related to the micro-change of the electric field.
-
Keywords:
- dielectric barrier discharge /
- pattern discharge /
- spatio-temporal evolution /
- pre-ionization
-
图 2 随着施加电压的增大, 实验观察到不同的等离子体结构 (a) 同心环斑图; (b)—(d) 环-点阵-同心环斑图; (e) 靶波斑图; (f) 蜂窝斑图
Fig. 2. Experimental observations of different plasma structures as the applied voltage increases: (a) concentric-roll pattern; (b)–(d) loop dot-matrix concentric-roll pattern; (e) target-wave pattern; (f) honeycomb pattern.
-
[1] Navratil Z, Brandenburg R, Trunec D, Brablec A, St’ahel P, Wagner H E, Kopecky Z 2006 Plasma Sources Sci. Technol. 15 8
Google Scholar
[2] Li J Y, Zhou D S, Rebrov E, Tang X, Kim M 2024 J. Phys. D: Appl. Phys. 57 395201
Google Scholar
[3] Dong L F, Mi Y L, Pan Y Y 2020 Phys. Plasmas 27 023504
Google Scholar
[4] Zhao X E, Hao W R 2024 Math. Biosci. 374 109222
Google Scholar
[5] Floyd C, Dinner A R, Vaikuntanathan S 2024 Phys. Rev. Res. 6 033100
Google Scholar
[6] Reyes L I, Pérez L M, Pedraja-Rejas L, Díaz P, Mendoza J, Bragard J, Clerc M G, Laroze D 2024 Chaos Soliton. Fract. 186 115244
Google Scholar
[7] Nath R, Santos L 2010 Phys. Rev. 81 033626
Google Scholar
[8] Otsuka K 1989 Opt. Lett. 14 925
Google Scholar
[9] Vorontsov M A, Firth W J 1994 Phys. Rev. A 49 2891
Google Scholar
[10] Thomas M, Borris J, Dohse A, Eichler M, Hinze A, Lachmann K, Nagel K, Klages C P 2012 Plasma Process. Polym. 9 1086
Google Scholar
[11] 万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧 2020 69 145203
Google Scholar
Wang H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203
Google Scholar
[12] Feng J Y, Pan Y Y, Li C X, Liu B B, Dong L F 2020 Phys. Plasmas 27 063516
Google Scholar
[13] Bhoj A N, Kolobov V I 2011 IEEE Trans. Plasma Sci. 39 2152
Google Scholar
[14] Duan X X, Xu S W, Liu J, He F, Ouyang J T 2011 IEEE Trans. Plasma Sci. 39 2074
Google Scholar
[15] Zhang J, Wang Y H, Wang D Z 2015 Phys. Plasmas 22 043517
Google Scholar
[16] Li X C, Liu R, Jia P Y, Wu K Y, Ren C H, Yin Z Q 2018 Phys. Plasmas 25 013512
Google Scholar
[17] Li Z Y, Jin S H, Xian Y B, Nie L L, Liu D W, Lu X P 2021 Plasma Sources Sci. Technol. 30 065026
Google Scholar
[18] Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003
Google Scholar
[19] Zhang J H, Pan Y Y, Feng J Y, He Y N, Chu J H, Dong L F 2023 Plasma Sci. Technol. 25 025406
Google Scholar
[20] Noma Y, Choi J H, Stauss S, Tomai T, Terashima K 2008 Appl. Phys. Express 1 046001
Google Scholar
[21] Dong L F, Ran J X, Mao Z G 2005 Appl. Phys. Lett. 86 161501
Google Scholar
[22] Feng J Y, Dong L F, Wei L Y, Fan W L, Li C X, Pan Y Y 2016 Phys. Plasmas 23 093502
Google Scholar
[23] Li Y H, Wang Y, Pan Y Y, Tian M, Zhang J H, Dong L F 2024 Phys. Plasmas 31 033502
Google Scholar
[24] Zhu P, Dong L F, Yang J, Gao Y N, Wang Y J, Li B 2015 Phys. Plasmas 22 023507
Google Scholar
[25] Dong L F, Shang J, Song Q, Fan W L, Ji Y F 2012 IEEE Trans. Plasma Sci. 40 1162
Google Scholar
[26] Liu W B, Dong L F, Wang Y J, Zhang H, Pan Y Y 2016 Phys. Plasmas 23 082307
Google Scholar
[27] Fan W L, Jia M M, Zhu P L, Liu C Y, Hou X H, Zhang J F, He Y F, Liu F C 2022 APL Photon. 7 116105
Google Scholar
[28] Guo L T, Pan Y Y, Yu G L, Wang Z Y, Gao K Y, Fan W L, Dong L F 2023 Plasma Sci. Technol. 25 085501
Google Scholar
[29] Demaude A, Baert K, Petitjean D, Zveny J, Goormaghtigh E, Hauffman T, Gordon M J, Reniers F 2022 Adv. Sci. 9 2200237
Google Scholar
[30] Yang L Z, Liu Z W, Mao Z G, Li S, Chen Q 2017 Jpn. J. Appl. Phys. 56 01AC02
Google Scholar
[31] 董丽芳, 朱平, 杨京, 李犇 2015 高电压技术 41 2856
Dong L F, Zhu P, Yang J, Li B 2015 High Volt. Eng. 41 2856
[32] Bernecker B, Callegari T, Blanco S, Fournier R, Boeuf J P 2009 Eur. Phys. J. Appl. Phys. 47 22808
Google Scholar
[33] Sun H Y, Dong L F, Liu F C, Mi Y L, Han R, Huang J Y, Liu B B, Hao F, Pan Y Y 2018 Phys. Plasmas 25 113507
Google Scholar
[34] Yu G L, Dong L F, Dou Y Y, Mi Y L, Liu B B, Li C X, Pan Y Y 2019 Phys. Plasmas 26 023507
Google Scholar
[35] Dong L F, Lu N, Shang J, Liu L, Li X C 2011 IEEE Trans. Plasma Sci. 39 2156
Google Scholar
[36] Dong L F, Liu W B, Wang Y J, Zhang X P 2014 IEEE Trans. Plasma Sci. 42 2
Google Scholar
[37] Duan X X, He F, Ouyang J T 2012 Plasma Sources Sci. Technol. 21 015008
Google Scholar
[38] Li C X, Feng J Y, Wang SC, Li C, Ran J X, Pan Y Y, Dong L F 2024 Plasma Sci. Technol. 26 085401
Google Scholar
[39] Yao J X, Miao J S, Li J X, Lian X Y, Ouyang J T 2023 Appl. Phys. Lett. 122 082905
Google Scholar
[40] 冉俊霞, 罗海云, 王新新 2011 高电压技术 37 1486
Ran J X, Luo H Y, Wang X X 2011 High Volt. Eng. 37 1486
[41] Liu S H, Neiger M 2003 J. Phys. D: Appl. Phys. 36 3144
Google Scholar
[42] Liu J, Yang Y, Nie L, Liu D, Lu X 2024 J. Phys. D: Appl. Phys. 57 275201
Google Scholar
[43] Zhao N, Wu K Y, He X R, Chen J Y, Tan X, Wu J C, Ran J X, Jia P Y, Li X C 2022 J. Phys. D: Appl. Phys. 55 015203
Google Scholar
[44] Wu K Y, Wu J C, Jia B Y, Ren C H, Kang P C, Jia P Y, Li X C 2020 Phys. Plasmas 27 082308
Google Scholar
计量
- 文章访问数: 350
- PDF下载量: 1
- 被引次数: 0