Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Growth mechanism of surface ice flakes at the initial stage of freezing of water-based organic solvent liquid film

SUN Yuyang NIU Yuying ZONG Xiaoxiao ZHAO Yugang

Citation:

Growth mechanism of surface ice flakes at the initial stage of freezing of water-based organic solvent liquid film

SUN Yuyang, NIU Yuying, ZONG Xiaoxiao, ZHAO Yugang
cstr: 32037.14.aps.74.20250902
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Freezing of multicomponent droplets and thin films is ubiquitous in natural environments and engineered settings. Previous studies on multicomponent droplets, including Marangoni-driven self-lifting droplets and soap-bubble freezing, have identified the roles of interfacial flow and solute redistribution, often exhibiting a snow-globe effect of migrating ice particles. Curvature and field-of-view constraints in droplet systems hinder continuous observation of a single object. Here, utilizing the comparability of interfacial heat and mass transfer between droplets and films, we employ a flat isopropanol-water binary film on a cooled substrate to achieve high-resolution, time-resolved in-situ microscopy observation of individual separated ice flakes within a supercooling (ΔT) range of the substrate. Experiments show that with the increase of ΔT, the external shape of ice flakes evolves from hexagonal pyramid to dodecagonal pyramid and ultimately to a nearly-conical form, accompanied by the decrease of transparency. We quantify morphological evolution by using a shape factor β and qualitatively distinguish crystal-structure differences by combining bright-field and dark-field microscopy. A minimal model that couples solute and thermal diffusion with Marangoni stress rationalizes the observations: solute-concentration gradients primarily drive structural evolution, while the competition between advection and diffusion governs anisotropic growth. These results provide mechanistic insight into interfacial freezing dynamics of multi-component liquid films and establish flat-film microscopy as a platform for single-flake kinetics.
      Corresponding author: ZHAO Yugang, ygzhao@usst.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52276079).
    [1]

    Wu X M, Chu F Q, Ma Q, Zhu B 2017 Appl. Therm. Eng. 118 448Google Scholar

    [2]

    Li L Y, Liu Z L, Li Y X, Dong Y W 2017 Int. J. Heat Mass Transfer 113 166Google Scholar

    [3]

    Li K, Miao Y M, Xia D Y, Liu N, Zhang H, Dou B L, He Q Z, Zhao Y G, Li C, Mohtaram S 2024 Appl. Therm. Eng. 248 123282Google Scholar

    [4]

    Wang P, Zhou W S, Bao Y Q, Li H 2018 Struct Control Health Monit. 25 e2138Google Scholar

    [5]

    Wei K X, Yang Y, Zuo H Y, Zhong D Q 2020 Wind Energy 23 433Google Scholar

    [6]

    Cebeci T, Kafyeke F 2003 Annu. Rev. Fluid Mech. 35 11Google Scholar

    [7]

    Cao Y, Wu Z, Su Y, Xu Z 2015 Prog. Aeronaut. Sci. 74 62Google Scholar

    [8]

    Hu H B, He Q, Yu S X, Zhang Z Z, Song D 2016 Acta Phys. Sin. 65 104703 [胡海豹, 何强, 余思潇, 张招柱, 宋东 2016 65 104703]Google Scholar

    Hu H B, He Q, Yu S X, Zhang Z Z, Song D 2016 Acta Phys. Sin. 65 104703Google Scholar

    [9]

    He Z W, Zhuo Y Z, Wang F, He J Y, Zhang Z L 2019 Soft Matter 15 2905Google Scholar

    [10]

    Ji K P, Rui X M, Li L, Leblond A, McClure G 2015 Comput. Struct. 157 153Google Scholar

    [11]

    Gurganus C, Kostinski A B, Shaw R A 2011 J. Phys. Chem. Lett. 2 1449Google Scholar

    [12]

    Gurganus C, Kostinski A B, Shaw R A 2013 J. Phys. Chem. C 117 6195Google Scholar

    [13]

    Inada T, Tomita H, Koyama T 2014 Int. J. Refrig. 40 294Google Scholar

    [14]

    Fletcher N H 1958 J. Chem. Phys. 29 572Google Scholar

    [15]

    Wildeman S, Sterl S, Sun C, Lohse D 2017 Phys. Rev. Lett. 118 084101Google Scholar

    [16]

    Jung S, Tiwari M K, Doan N V, Poulikakos D 2012 Nat. Commun. 3 615Google Scholar

    [17]

    Wang Y, Cheng Y 2019 Int. J. Heat Mass Transfer 140 1023Google Scholar

    [18]

    Peppin S S L, Elliott J A W, Worster M G 2006 J. Fluid Mech. 554 147Google Scholar

    [19]

    Zhao Y, Yan Z, Zhang H, Yang C, Cheng P 2021 Int. J. Heat Mass Transfer 165 120609Google Scholar

    [20]

    Marín A G, Enríquez O R, Brunet P, Colinet P, Snoeijer J H 2014 Phys. Rev. Lett. 113 054301Google Scholar

    [21]

    Yan X, Au S C Y, Chan S C, Chan Y L, Leung N C, Wu W Y, Sin D T, Zhao G L, Chung C H Y, Mei M, Yang Y C, Qiu H H, Yao S S 2024 Nat. Commun. 15 1567Google Scholar

    [22]

    Lyu S, Zhu X, Legendre D, Sun C 2023 Droplet 2 e90Google Scholar

    [23]

    Fang W Z, Zhu F Q, Zhu L L, Tao W Q, Yang C 2022 Commun. Phys. 5 51Google Scholar

    [24]

    Jin P H, Yan X, Hoque M J, Rabbi K F, Sett S, Ma J C, Li J Q, Fang X L, Carpenter J, Cai S J, Tao W Q, Miljkovic N 2022 Cell Rep. Phys. Sci. 3 100894Google Scholar

    [25]

    张旋, 刘鑫, 吴晓敏, 闵敬春 2020 工程热 41 402

    Zhang X, Liu X, Wu X M, Min J C 2020 J. Eng. Thermophys. 41 402

    [26]

    董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶 2018 67 054702Google Scholar

    Dong Q Q, Hu H B, Chen S Q, He Q, Bao L Y 2018 Acta Phys. Sin. 67 054702Google Scholar

    [27]

    Ivall J, Hachem M, Coulombe S, Servio P 2015 Cryst. Growth Des. 15 3969Google Scholar

    [28]

    Zhao Y, Yang C, Cheng P 2021 Appl. Phys. Lett. 118 14Google Scholar

    [29]

    Jiang Y P, Zhao Y G, Zhang H, Yang C, Cheng P 2024 Cell Rep. Phys. Sci. 5 4Google Scholar

    [30]

    Zeng H, Wakata Y, Chao X, Li M B, Sun C 2023 J. Colloid and Interf. Sci. 648 736Google Scholar

    [31]

    Dang Q, Song M L, Dang C B, Zhan T Z, Zhang L 2022 Langmuir 38 7846Google Scholar

    [32]

    Miao Y M, Zhao Y G, Gao M, Yang L, Yang C 2022 Appl. Phys. Lett. 120 091602Google Scholar

    [33]

    Chu F Q, Li S X, Zhao C J, Feng Y H, Lin Y K, Wu X M, Yan X, Miljkovic N 2024 Nat. Commun. 15 2249Google Scholar

    [34]

    Schutzius T M, Jung S, Maitra T, Graeber G, Köhme M, Poulikakos D 2015 Nature 527 82Google Scholar

    [35]

    Graeber G, Schutzius T M, Eghlidi H, Poulikakos D 2017 Proc. Natl. Acad. Sci. 114 11040Google Scholar

    [36]

    Zhuo Y H, Xiao S B, Håkonsen V, He J Y, Zhang Z L 2020 ACS Mater. Lett. 2 616Google Scholar

    [37]

    Zhu Z B, Zhang X, Zhao Y G, Huang X Y, Yang C 2022 Int. J. Therm. Sci. 171 107241Google Scholar

    [38]

    Lambley H, Graeber G, Vogt R, Gaugler L C, Baumann E, Schutzius T M, Poulikakos D 2023 Nat. Phys. 19 649Google Scholar

    [39]

    褚福强, 吴晓敏, 朱毅 2017 工程热 38 352

    Chu F Q, Wu X M, Zhu Y 2017 J. Eng. Thermophys. 38 352

    [40]

    Chen R H, Phuoc T X, Martello D 2011 Int. J. Heat Mass Transfer 54 2459Google Scholar

    [41]

    Bhuiyan M H U, Saidur R, Amalina M A, Mostafizur R M, Islam A 2015 Procedia Eng. 105 431Google Scholar

    [42]

    Ahmadi S F, Nath S, Kingett C M, Yue P, Boreyko J B 2019 Nat. Commun. 10 2531Google Scholar

    [43]

    Wang F, Chen L, Li Y Q, Huo P, Gu X, Hu M, Deng D S 2024 Phys. Rev. Lett. 132 014002Google Scholar

    [44]

    Wang F, Zeng H, Du Y, Tang X, Sun C 2024 arXiv: 2407.20555v1 [physics. flu-dyn]

    [45]

    Moore M R, Mughal M S, Papageorgiou D T 2017 J. Fluid Mech. 817 455Google Scholar

    [46]

    Thiévenaz V, Josserand C, Séon T 2020 Phys. Rev. Fluids 5 041601Google Scholar

    [47]

    Schremb M, Campbell J M, Christenson H K, Tropea C 2017 Langmuir 33 4870Google Scholar

    [48]

    Campbell J M, Sandnes B, Flekkøy E G, Måløy K J 2022 Cryst. Growth Des. 22 2433Google Scholar

    [49]

    Babich A, Bashkatov A, Yang X, Mutschke G, Eckert K 2023 Int. J. Heat Mass Transfer 215 124466Google Scholar

    [50]

    Tokgoz S, Geisler R, van Bokhoven L J A, Wieneke B 2012 Meas. Sci. Technol. 23 115302Google Scholar

    [51]

    Zhang M K, Gao C, Ye B, Tang J C, Jiang B 2019 Cryobiology 86 47Google Scholar

    [52]

    Li J Q, Rahman M, Patel S, Bogner R H, Fan T H 2022 Cryst. Growth Des. 22 6917Google Scholar

    [53]

    Kurz W, Fisher D J 1992 Fundamentals of Solidification 5th Edition (Switzerland: Trans Tech Publication Ltd) pp56–59

    [54]

    Libbrecht K 2017 Annu. Rev. Mater. Res. 47 271Google Scholar

    [55]

    Zhao Y, Guo Q, Lin T, Cheng P 2020 Int. J. Heat Mass Transfer 159 120074Google Scholar

    [56]

    Lohse D, Zhang X 2020 Nat. Rev. Phys. 2 426Google Scholar

    [57]

    Kitahata H, Yoshinaga N 2018 J. Chem. Physi. 148 134906Google Scholar

    [58]

    Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444Google Scholar

    [59]

    Dehaoui A, Issenmann B, Caupin F 2015 Proc. Natl. Acad. Sci. 112 12020Google Scholar

    [60]

    Pothoczki S, Pethes I, Pusztai L, Temleitner L, Csókás D, Kohara S, Ohara K, Bakó I 2021 J. Mol. Liq. 329 115592Google Scholar

  • 图 1  (a) 实验装置示意图; (b) 硅片处理前后接触角对比; (c) $\Delta T = \left( {5.5 \pm 0.1} \right)$ ℃时异丙醇-水液膜冻结过程; (d), (e) 对单个冰片的显微观察的时间起点和终点

    Figure 1.  (a) Schematic diagram of the experimental setup; (b) comparison of contact angles before and after plasma treatment of monocrystalline silicon wafers; (c) freezing process of isopropanol-water liquid film at $\Delta T = \left( {5.5 \pm 0.1} \right)$ ℃; (d), (e) the beginning and ending of microscopic observation of a single ice flake.

    图 2  (a), (b) 不同过冷度下冰片生长动力学过程 (a) $\Delta T = \left( {4.1 \pm 0.1} \right)$ ℃; (b) $\Delta T = \left( {12.6 \pm 0.1} \right)$ ℃. (c), (d) 不同过冷度下冰片轮廓的变化 (c) $\Delta T = \left( {4.1 \pm 0.1} \right)$ ℃; (d) $\Delta T = \left( {12.6 \pm 0.1} \right)$ ℃

    Figure 2.  (a), (b) Kinetic processes of ice flakes growth at different supercooling degrees: (a) $\Delta T = \left( {4.1 \pm 0.1} \right)$ ℃; (b) $\Delta T = $$ \left( {12.6 \pm 0.1} \right)$ ℃. (c), (d) Changes of ice flake profiles at different supercooling degrees: (c) $\Delta T = \left( {4.1 \pm 0.1} \right)$ ℃; (d) $\Delta T = $$ \left( {12.6 \pm 0.1} \right)$ ℃.

    图 3  明场以及暗场观察对比 (a) 明场观察示意图; (b) 暗场观察示意图; (c) $\Delta T = \left( {4.1 \pm 0.1} \right)$ ℃暗场下无法观察到冰片, 冰片几乎透明; (d) $\Delta T = \left( {12.6 \pm 0.1} \right)$ ℃暗场下观察到冰片为白色且不透明

    Figure 3.  Comparison of bright-field as well as dark-field observation: (a) Schematic of bright-field observation; (b) schematic of dark-field observation; (c) ice flakes could not be observed in the dark-field at $\Delta T = \left( {4.1 \pm 0.1} \right)$ ℃, and the ice flakes were almost transparent; (d) ice flakes were observed to be white and opaque in the dark-field at $\Delta T = \left( {12.6 \pm 0.1} \right)$ ℃.

    图 4  (a) 不同过冷度下分离冰片形貌; (b) 形状因子定义; (c) 形状因子随过冷度变化规律

    Figure 4.  (a) Morphology of separated ice flakes at different supercooling degrees; (b) definition of shape factor; (c) variation rule of shape factor with supercooling degree.

    图 5  物理机制示意图 (a) 低过冷度下结冰偏析与马兰戈尼流的产生; (b) 过冷度增加溶质扩散减弱, 浓度差增加马兰戈尼流增强, 冰片加速生长; (c) 大过冷度下马兰戈尼流减弱导致溶质富集

    Figure 5.  Schematic diagram of the physical mechanism: (a) Icing segregation and production of Marangoni flow at low subcooling; (b) weakened solute diffusion, enhanced Marangoni flow, and accelerated growth of ice flakes at increasing subcooling; (c) weakened Marangoni flow at large subcooling leading to solute enrichment.

    图 6  (a) 冰片水平方向生长速度定义; (b) 冰片水平方向生长速度随过冷度变化

    Figure 6.  (a) Definition of the horizontal growth velocity of the ice flakes; (b) horizontal growth velocity versus supercooling.

    图 7  冰片生长不同生长模式相图

    Figure 7.  Phase diagram of different growth modes of ice flakes.

    Baidu
  • [1]

    Wu X M, Chu F Q, Ma Q, Zhu B 2017 Appl. Therm. Eng. 118 448Google Scholar

    [2]

    Li L Y, Liu Z L, Li Y X, Dong Y W 2017 Int. J. Heat Mass Transfer 113 166Google Scholar

    [3]

    Li K, Miao Y M, Xia D Y, Liu N, Zhang H, Dou B L, He Q Z, Zhao Y G, Li C, Mohtaram S 2024 Appl. Therm. Eng. 248 123282Google Scholar

    [4]

    Wang P, Zhou W S, Bao Y Q, Li H 2018 Struct Control Health Monit. 25 e2138Google Scholar

    [5]

    Wei K X, Yang Y, Zuo H Y, Zhong D Q 2020 Wind Energy 23 433Google Scholar

    [6]

    Cebeci T, Kafyeke F 2003 Annu. Rev. Fluid Mech. 35 11Google Scholar

    [7]

    Cao Y, Wu Z, Su Y, Xu Z 2015 Prog. Aeronaut. Sci. 74 62Google Scholar

    [8]

    Hu H B, He Q, Yu S X, Zhang Z Z, Song D 2016 Acta Phys. Sin. 65 104703 [胡海豹, 何强, 余思潇, 张招柱, 宋东 2016 65 104703]Google Scholar

    Hu H B, He Q, Yu S X, Zhang Z Z, Song D 2016 Acta Phys. Sin. 65 104703Google Scholar

    [9]

    He Z W, Zhuo Y Z, Wang F, He J Y, Zhang Z L 2019 Soft Matter 15 2905Google Scholar

    [10]

    Ji K P, Rui X M, Li L, Leblond A, McClure G 2015 Comput. Struct. 157 153Google Scholar

    [11]

    Gurganus C, Kostinski A B, Shaw R A 2011 J. Phys. Chem. Lett. 2 1449Google Scholar

    [12]

    Gurganus C, Kostinski A B, Shaw R A 2013 J. Phys. Chem. C 117 6195Google Scholar

    [13]

    Inada T, Tomita H, Koyama T 2014 Int. J. Refrig. 40 294Google Scholar

    [14]

    Fletcher N H 1958 J. Chem. Phys. 29 572Google Scholar

    [15]

    Wildeman S, Sterl S, Sun C, Lohse D 2017 Phys. Rev. Lett. 118 084101Google Scholar

    [16]

    Jung S, Tiwari M K, Doan N V, Poulikakos D 2012 Nat. Commun. 3 615Google Scholar

    [17]

    Wang Y, Cheng Y 2019 Int. J. Heat Mass Transfer 140 1023Google Scholar

    [18]

    Peppin S S L, Elliott J A W, Worster M G 2006 J. Fluid Mech. 554 147Google Scholar

    [19]

    Zhao Y, Yan Z, Zhang H, Yang C, Cheng P 2021 Int. J. Heat Mass Transfer 165 120609Google Scholar

    [20]

    Marín A G, Enríquez O R, Brunet P, Colinet P, Snoeijer J H 2014 Phys. Rev. Lett. 113 054301Google Scholar

    [21]

    Yan X, Au S C Y, Chan S C, Chan Y L, Leung N C, Wu W Y, Sin D T, Zhao G L, Chung C H Y, Mei M, Yang Y C, Qiu H H, Yao S S 2024 Nat. Commun. 15 1567Google Scholar

    [22]

    Lyu S, Zhu X, Legendre D, Sun C 2023 Droplet 2 e90Google Scholar

    [23]

    Fang W Z, Zhu F Q, Zhu L L, Tao W Q, Yang C 2022 Commun. Phys. 5 51Google Scholar

    [24]

    Jin P H, Yan X, Hoque M J, Rabbi K F, Sett S, Ma J C, Li J Q, Fang X L, Carpenter J, Cai S J, Tao W Q, Miljkovic N 2022 Cell Rep. Phys. Sci. 3 100894Google Scholar

    [25]

    张旋, 刘鑫, 吴晓敏, 闵敬春 2020 工程热 41 402

    Zhang X, Liu X, Wu X M, Min J C 2020 J. Eng. Thermophys. 41 402

    [26]

    董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶 2018 67 054702Google Scholar

    Dong Q Q, Hu H B, Chen S Q, He Q, Bao L Y 2018 Acta Phys. Sin. 67 054702Google Scholar

    [27]

    Ivall J, Hachem M, Coulombe S, Servio P 2015 Cryst. Growth Des. 15 3969Google Scholar

    [28]

    Zhao Y, Yang C, Cheng P 2021 Appl. Phys. Lett. 118 14Google Scholar

    [29]

    Jiang Y P, Zhao Y G, Zhang H, Yang C, Cheng P 2024 Cell Rep. Phys. Sci. 5 4Google Scholar

    [30]

    Zeng H, Wakata Y, Chao X, Li M B, Sun C 2023 J. Colloid and Interf. Sci. 648 736Google Scholar

    [31]

    Dang Q, Song M L, Dang C B, Zhan T Z, Zhang L 2022 Langmuir 38 7846Google Scholar

    [32]

    Miao Y M, Zhao Y G, Gao M, Yang L, Yang C 2022 Appl. Phys. Lett. 120 091602Google Scholar

    [33]

    Chu F Q, Li S X, Zhao C J, Feng Y H, Lin Y K, Wu X M, Yan X, Miljkovic N 2024 Nat. Commun. 15 2249Google Scholar

    [34]

    Schutzius T M, Jung S, Maitra T, Graeber G, Köhme M, Poulikakos D 2015 Nature 527 82Google Scholar

    [35]

    Graeber G, Schutzius T M, Eghlidi H, Poulikakos D 2017 Proc. Natl. Acad. Sci. 114 11040Google Scholar

    [36]

    Zhuo Y H, Xiao S B, Håkonsen V, He J Y, Zhang Z L 2020 ACS Mater. Lett. 2 616Google Scholar

    [37]

    Zhu Z B, Zhang X, Zhao Y G, Huang X Y, Yang C 2022 Int. J. Therm. Sci. 171 107241Google Scholar

    [38]

    Lambley H, Graeber G, Vogt R, Gaugler L C, Baumann E, Schutzius T M, Poulikakos D 2023 Nat. Phys. 19 649Google Scholar

    [39]

    褚福强, 吴晓敏, 朱毅 2017 工程热 38 352

    Chu F Q, Wu X M, Zhu Y 2017 J. Eng. Thermophys. 38 352

    [40]

    Chen R H, Phuoc T X, Martello D 2011 Int. J. Heat Mass Transfer 54 2459Google Scholar

    [41]

    Bhuiyan M H U, Saidur R, Amalina M A, Mostafizur R M, Islam A 2015 Procedia Eng. 105 431Google Scholar

    [42]

    Ahmadi S F, Nath S, Kingett C M, Yue P, Boreyko J B 2019 Nat. Commun. 10 2531Google Scholar

    [43]

    Wang F, Chen L, Li Y Q, Huo P, Gu X, Hu M, Deng D S 2024 Phys. Rev. Lett. 132 014002Google Scholar

    [44]

    Wang F, Zeng H, Du Y, Tang X, Sun C 2024 arXiv: 2407.20555v1 [physics. flu-dyn]

    [45]

    Moore M R, Mughal M S, Papageorgiou D T 2017 J. Fluid Mech. 817 455Google Scholar

    [46]

    Thiévenaz V, Josserand C, Séon T 2020 Phys. Rev. Fluids 5 041601Google Scholar

    [47]

    Schremb M, Campbell J M, Christenson H K, Tropea C 2017 Langmuir 33 4870Google Scholar

    [48]

    Campbell J M, Sandnes B, Flekkøy E G, Måløy K J 2022 Cryst. Growth Des. 22 2433Google Scholar

    [49]

    Babich A, Bashkatov A, Yang X, Mutschke G, Eckert K 2023 Int. J. Heat Mass Transfer 215 124466Google Scholar

    [50]

    Tokgoz S, Geisler R, van Bokhoven L J A, Wieneke B 2012 Meas. Sci. Technol. 23 115302Google Scholar

    [51]

    Zhang M K, Gao C, Ye B, Tang J C, Jiang B 2019 Cryobiology 86 47Google Scholar

    [52]

    Li J Q, Rahman M, Patel S, Bogner R H, Fan T H 2022 Cryst. Growth Des. 22 6917Google Scholar

    [53]

    Kurz W, Fisher D J 1992 Fundamentals of Solidification 5th Edition (Switzerland: Trans Tech Publication Ltd) pp56–59

    [54]

    Libbrecht K 2017 Annu. Rev. Mater. Res. 47 271Google Scholar

    [55]

    Zhao Y, Guo Q, Lin T, Cheng P 2020 Int. J. Heat Mass Transfer 159 120074Google Scholar

    [56]

    Lohse D, Zhang X 2020 Nat. Rev. Phys. 2 426Google Scholar

    [57]

    Kitahata H, Yoshinaga N 2018 J. Chem. Physi. 148 134906Google Scholar

    [58]

    Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444Google Scholar

    [59]

    Dehaoui A, Issenmann B, Caupin F 2015 Proc. Natl. Acad. Sci. 112 12020Google Scholar

    [60]

    Pothoczki S, Pethes I, Pusztai L, Temleitner L, Csókás D, Kohara S, Ohara K, Bakó I 2021 J. Mol. Liq. 329 115592Google Scholar

  • [1] GUO Xucai, CHEN Meiduo, XIE Yushan, WANG Pengfei, XU Songlin. Thermal wave propagation in graphene based on the two-phase relaxation theory. Acta Physica Sinica, 2026, 75(3): . doi: 10.7498/aps.75.20251335
    [2] Xie Ke-Wei, Tao Jin-Cheng, Dong Yu-Li, Weng Yu-Yan, Yang Jun-Yi, Fang Liang. Study on Marangoni explosion of binary mixtures in liquid layer. Acta Physica Sinica, 2024, 73(7): 074702. doi: 10.7498/aps.73.20231364
    [3] Meng Ling-Zhi, Yuan Li-Bo. Thermal diffusion coupling mechanism and its application of discrete waveguide. Acta Physica Sinica, 2023, 72(24): 246601. doi: 10.7498/aps.72.20230204
    [4] Ren Feng, Yin Sheng-Yi, Lu Zhi-Peng, Li Yang, Wang Yu, Zhang Shen-Jin, Yang Feng, Wei Dong. Applications of deep ultraviolet laser photo-and thermal-emission electron microscope in thermal dispenser cathode research. Acta Physica Sinica, 2017, 66(18): 187901. doi: 10.7498/aps.66.187901
    [5] Li Xiao-Li, Sun Jian-Gang, Tao Ning, Zeng Zhi, Zhao Yue-Jin, Shen Jing-Ling, Zhang Cun-Lin. Application of nonlinear data fitting method to thermal diffusivity of carbon-carbon composite measured by transmission pulsed thermography. Acta Physica Sinica, 2017, 66(18): 188702. doi: 10.7498/aps.66.188702
    [6] Xie Di-Ni, Peng Hong-Shang, Huang Shi-Hua, You Fang-Tian, Wang Xiao-Hui. Hydrothermal diffusion of Eu3+ in EuVO4@YVO4 core-shell nanoparticles and its influence on luminescent properties. Acta Physica Sinica, 2014, 63(14): 147801. doi: 10.7498/aps.63.147801
    [7] Chen Gong-Bao, Lu Wen-Jiang, Tang Fu-Ling, Xie Yong. Liquid-like structure and self-diffusion channels on Al surfaces. Acta Physica Sinica, 2011, 60(6): 066801. doi: 10.7498/aps.60.066801
    [8] Zhang Li, Liu Shu-Tang. Control of thermal diffusion fractal growth of thin plate under environmental disturbance. Acta Physica Sinica, 2010, 59(11): 7708-7712. doi: 10.7498/aps.59.7708
    [9] Li Mei-Li, Zhang Di, Sun Hong-Ning, Fu Xing-Ye, Yao Xiu-Wei, Li Cong, Duan Yong-Ping, Yan Yuan, Mu Hong-Chen, Sun Min-Hua. Molecular dynamics study of the phase separation and diffusion in Lennard-Jones binary liquid. Acta Physica Sinica, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [10] Yan Li-Fen, Wang Hong-Cheng, She Wei-Long. Influence of diffusion on the interaction between photovoltaic spatial solitons. Acta Physica Sinica, 2006, 55(10): 5257-5262. doi: 10.7498/aps.55.5257
    [11] Ni Jing, Cai Jian-Wang, Zhao Jian-Gao, Yan Shi- Shen, Mei Liang-Mo, Zhu Shi-Fu. The antiferromagnetic coupling and interface diffusion in Fe/Si multilayers. Acta Physica Sinica, 2004, 53(11): 3920-3923. doi: 10.7498/aps.53.3920
    [12] ZHANG XIAN-MEI, WAN BAO-NIAN, RUAN HUAI-LIN, WU ZHEN-WEI. STUDY OF THE ELECTRON THERMAL CONDUCTIVITY OF THE OHMICALLY HEATED DISCHARGES IN THE HT-7 TOKAMAK. Acta Physica Sinica, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
    [13] LIU MU-REN, CHEN RUO-HANG, LI HUA-BING, KONG LING-JIANG. A LATTICE BOLTZMANN METHOD FOR TWO-DIMENSIONAL CONVECTION-DIFFUSION EQUATION. Acta Physica Sinica, 1999, 48(10): 1800-1803. doi: 10.7498/aps.48.1800
    [14] ZHAO JIAN-HUA, LIU RI-PING, ZHOU ZHEN-HUA, ZHANG XIANG-YI, ZHANG MING, XU YING-FAN, WANG WEN-KUI. A NEW WAY FOR MEASURING INTERDIFFUSION COEFFICIENT OF LIQUID METAL——SOLID/LIQUID-LIQUID/SOLID TRILAYER SYSTEM. Acta Physica Sinica, 1999, 48(3): 416-420. doi: 10.7498/aps.48.416
    [15] ZHAO YUE-CHAO, XIAN DING-CHANG, WU ZI-QIN. FORMATION PROCESS OF PHASES IN BINARY PLANAR DIFFUSION COUPLE. Acta Physica Sinica, 1993, 42(1): 78-86. doi: 10.7498/aps.42.78
    [16] DIFFUSION OF ELEMENTS AND FORMATION OF INTERME-TALLIC PHASE AT THE INTERFACE OF THE BINARY DIFFUSION COUPLES. Acta Physica Sinica, 1989, 38(8): 1354-1359. doi: 10.7498/aps.38.1354
    [17] XIA MENG-FEN. THE ANOMALOUS DIFFUSION EFFECT IN A STOCHASTIC MAGNETIC FIELD. Acta Physica Sinica, 1981, 30(9): 1275-1278. doi: 10.7498/aps.30.1275
    [18] МЕТОД ЗФФЕКТА ХОЛЛА ОПРЕДЕЛЕНИИЮ ПОВЕРХНОСТНОЙ КОНЦЕНТРАЦИИ НА ДИФФУЗИОННОМ СЛОЕПЛУПРОВОД-НИКА,ГЛУБИНЫ ЭЛЕКТРОННО-ДЫРОЧНОГО ПЕРЕ-. Acta Physica Sinica, 1966, 22(8): 877-885. doi: 10.7498/aps.22.877
    [19] CHUO CHI-TSANG, SHIUH GEN-TWEN. THE FIGURE OF MERIT FOR THE ALLOY-DIFFUSED PARAMETRIC DIODE. Acta Physica Sinica, 1964, 20(4): 311-326. doi: 10.7498/aps.20.311
    [20] . Acta Physica Sinica, 1960, 16(2): 113-116. doi: 10.7498/aps.16.113
Metrics
  • Abstract views:  414
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  09 July 2025
  • Accepted Date:  05 September 2025
  • Available Online:  24 September 2025
  • Published Online:  20 November 2025
  • /

    返回文章
    返回
    Baidu
    map