-
In order to distinguish the interaction responses between unsteady thermal waves and thermal diffusion in graphene, the relaxation time of the heat flux vector τq and the relaxation time of the temperature gradient τT are introduced based on the Fourier's law, and a two-phase relaxation theoretical model is established. Parameter B describing ratio of the two phase relaxation times is employed to reveal the influencing rules of the interaction between thermal waves and thermal diffusion, and to investigate the regulatory mechanism of heat transport modes. When B approaches zero, the thermal wave effect dominates the heat transfer. When B approaches 0.5, the thermal diffusion characteristics are significant. When B is between zero and 0.5, both of them jointly dominate heat transfer, and the interaction between the two is of great significance. The results uncover the rules of thermal diffusion induced wave attenuation and thermal wave promoted thermal diffusion. They exhibit strong coupling characteristics. The unique contribution of third-order partial derivatives to local thermal wave disturbances is also revealed. A molecular dynamics model of short-pulse thermal shock for zigzag graphene is developed to unveil the coupling behaviors of thermal waves and thermal diffusion. The calculation parameters of two-phase relaxation theoretical model are calibrated. The main findings are presented in the figure below. The black, red, and yellow lines correspond to the in-plane longitudinal vibration, in-plane transverse vibration, and out-of-plane transverse vibration of carbon atoms, respectively. The solid lines denote elastic waves, while the dashed lines represent the second sound. The temperature field following the second sound is the outcome of the combined action of thermal waves and thermal diffusion. It merits attention that except for speed of the out-of-plane thermal wave is higher than that of the out-of-plane transverse elastic wave, speeds of the other two thermal waves are both lower than their elastic wave velocities.
-
Keywords:
- The Two-Phase Relaxation Model /
- Thermal Wave /
- Thermal Diffusion /
- Molecular Dynamics Simulation
-
[1] Geim A K, Novoselov K S 2007 Nat. Mater 6 183
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Gregorieva I V, Firsov A A, 2004 Science 306 197
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197
[4] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
[5] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[6] Lu Q, Lv H M, Wu X M, Wu H Q, Qian H 2017 Acta Phys. Sin. 66 218502 (in Chinese) [卢琪, 吕宏鸣, 伍晓明, 吴华强, 钱鹤 2017 66 218502]
[7] Lin Y M 2010 Science 327 662
[8] Schwierz F 2013 Proc. IEEE 101 1567
[9] Babaei M H, Chen Z T 2008 Int. J. Thermophys. 29 1457
[10] Jiang F M 2003 Microscale Thermophys. Eng. 6 331
[11] Tzou D Y, Guo Z Y 2010 Int. J. Therm. Sci. 49 1133
[12] Yao W J, Cao B Y 2014 Sci. Bull. 59 3495
[13] Shiomi J, Maruyama S. 2006 Phys. Rev. B 73 205420
[14] Ye Z Q, Cao B Y, Guo Z Y 2014 Acta Phys. Sin. 63 154704 (in Chinese) [叶振强,曹炳阳,过增元 2014 63 154704]
[15] Guyer R A, Krumhansl J A 1966 Phys. Rev. 148 778
[16] Tzou D Y 2014 Macro-to Microscale Heat Transfer (John Wiley & Sons, Inc) p62
[17] Jiang R Q 2002 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [姜任秋 2002 博士学位论文 (哈尔滨:哈尔滨工程大学)]
[18] Miao C H, Yuan L Z, Lu J H 2022 Acta Phys. Sin. 71 216201 (in Chinese) [苗春贺,袁良柱,陆建华 2022 71 216201]
[19] Xie Y S, Xu S L, Yuan L Z 2024 Combust. Explos. Shock Waves 44 081421 (in Chinese) [谢雨珊, 徐松林,袁良柱 2024 爆炸与冲击44 081421]
[20] Xi D Y, Xu S L 2016 Rock Physics and Constitutive Theory(Hefei: University of Science and Technology of China Press) p338 (in Chinese) [席道瑛,徐松林 2016 岩石物理与本构理论(合肥:中国科学技术大学出版社) 第338页]
[21] Hu J N, Ruan X L, Chen Y P 2009 Nano. Lett. 9 2730
[22] Brenner D W 1990 Phys. Rev. B 42 9458
[23] Yamaguchi Y, Maruyama S 1998 Chem. Phys. Lett. 286 336
[24] Lindsay L, Broido D A 2010 Phys. Rev. B 81 205441
[25] Zelazny M, Richardson R, Ackland G J 2011 Phys. Rev. B 84 144113
[26] Zheng B Y, Dong H L, Chen F F 2013 Acta Phys. Sin. 63 076501 (in Chinese) [郑伯昱,董慧龙,陈非凡 2013 63 076501]
[27] Abhishek K, Kunwar A, Amit S, 2025 J. Appl. Phys 137 134302
[28] Jiang P H, Liu H J, Cheng L, Fan D D, Zhang J, Wei J, Liang J H, Shi J 2017 Carbon 113 108
Metrics
- Abstract views: 27
- PDF Downloads: 1
- Cited By: 0









下载: