Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A novel method of measuring nanowire-substrate interface adhesion energy in ambient atmosphere: Cross-stacked arch testing

LI Jinkai SONG Xiaodong HOU Lizhen WANG Shiliang

Citation:

A novel method of measuring nanowire-substrate interface adhesion energy in ambient atmosphere: Cross-stacked arch testing

LI Jinkai, SONG Xiaodong, HOU Lizhen, WANG Shiliang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Adhesion at the nanowire-substrate interface plays a critical role in determining the performance, integration density, and long-term reliability of micro/nano devices. However, existing measurement techniques, such as peeling tests based on atomic force microscopy and in-situ electron microscopy techniques, often suffer from operational complexity, limited environmental applicability, and large measurement uncertainties. To solve these problems, this study proposes a cross-stacked bridge testing method based on optical microscopy nanomanipulation (OMNM), which can directly and quantitatively measure nanowire–substrate interfacial adhesion energy under ambient conditions. In this method, nanowires are precisely stacked on the target substrate to form a grid structure, where miniature bridges spontaneously appear at the intersections. The bridge geometry is governed by the mechanical balance between nanowire bending deformation and interfacial adhesion. By combining Euler–Bernoulli beam theory with the principle of energy conservation, a quantitative model is established to correlate arch geometry with adhesion energy, thereby realizing reliable measurement. Using this method, we measure the adhesion energies of SiC, ZnO, and ZnS nanowires on Si substrates. The SiC/Si system yields an adhesion energy of (0.154 ± 0.030) J/m2, which is in excellent agreement with the van der Waals (vdW) theoretical value (~0.148 J/m2), confirming that its interfacial behavior is dominated by vdW forces. In contrast, the measured adhesion energies for ZnO/Si ((0.120 ± 0.034) J/m2) and ZnS/Si ((0.192 ± 0.043) J/m2) are significantly higher than their corresponding vdW predictions (0.090 J/m2 and 0.122 J/m2, respectively). This discrepancy is attributed to surface polarization in ZnO and ZnS nanowires, which induces additional electrostatic attraction and thus enhances interfacial adhesion. These findings not only reveal the coupling mechanism between vdW forces and electrostatic interactions in polar nanowire systems but also provide new experimental evidence for understanding complex interfacial phenomena. The proposed OMNM-based cross-stacked bridge testing method offers advantages of operational simplicity, high accuracy, and broad applicability. In addition to nanowires, it can be extended to other low-dimensional nanostructures, such as nanotubes and two-dimensional materials. Looking forward, this approach holds promise as an efficient platform for building adhesion energy databases of realistic systems and for advancing mechanistic insights into interfacial adhesion. Furthermore, it can provide valuable guidance for the design, optimization, and reliability evaluation of next-generation nanoelectronic and optoelectronic devices, thereby contributing to micro/nano fabrication and functional device engineering.
  • 图 1  在基底表面通过OM微纳操纵技术构建纳米线网格的示意图

    Figure 1.  Schematic illustration of nanowire grid fabrication on a substrate via optical microscopy (OM)-based micro/nanomanipulation technique.

    图 2  基底表面的纳米线网格在格点处所形成的微拱形的剖面图

    Figure 2.  Cross-sectional view of micro-arches formed at the grid points of the nanowire mesh on the substrate.

    图 3  通过OM微纳操纵技术在Si基底表面搭建的SiC纳米线网格 (a) OM照片, (b) SEM图片

    Figure 3.  SiC nanowire grid assembled on a Si substrate via OM-based micro/nanomanipulation: (a) OM image, (b) SEM image

    图 4  Si基底上SiC纳米线拱形 (a) 拱形的低倍AFM照片; (b) 纳米线横截面的2D AFM照片; (c) 纳米线拱形轮廓的2D AFM照片以及拟合的轮廓曲线; (d), (e) 纳米线拱形的低倍SEM照片和纳米线的高倍SEM图片

    Figure 4.  Arched SiC nanowire on Si substrate: (a) Low-magnification AFM image of the arched nanowire; (b) 2D AFM image of the nanowire cross-section; (c) 2D AFM profile of the arched nanowire and the fitted contour curve; (d), (e) low-magnification and high-magnification SEM images of the arched nanowire, respectively.

    图 5  大气环境下三种纳米线与Si基底之间的黏附能与纳米线厚度的关系. 图中的三条虚线对应于三种纳米线与Si基底之间的vdW黏附能的理论值

    Figure 5.  Relationship between adhesion energy and nanowire thickness for three types of nanowires on Si substrate under ambient conditions. The three dashed lines in the figure correspond to the theoretical values of van der Waals (vdW) adhesion energy between the three types of nanowires and Si substrate.

    图 6  Si基底上ZnO纳米线拱形 (a) 拱形的低倍AFM照片; (b) 纳米线拱形轮廓的2D AFM照片以及拟合的轮廓曲线; (c) 纳米线横截面的2D AFM照片; (d) 纳米线的高倍SEM图片

    Figure 6.  Arching profile of a ZnO nanowire on a Si substrate: (a) Low-magnification AFM image of the arched nanowire; (b) 2D AFM profile of the arched contour with fitted curve; (c) 2D AFM image of the nanowire cross-section; (d) high-magnification SEM image of the nanowire.

    Baidu
  • [1]

    Torkashvand Z, Shayeganfar F, Ramazani A 2024 Micromachines 15 175Google Scholar

    [2]

    Gu J L, Shen Y F, Tian S J, Xue Z G, Meng X H 2023 Biosensors 13 1025Google Scholar

    [3]

    Kong L D, Zhang T Z, Liu X Y, Zhao X, Xiong J M, Li H, Wang Z, Xie X M, You L X 2025 Nat. Photonics 19 407Google Scholar

    [4]

    Wu L, Hu Z Y, Liang L, Hu R J, Wang J Z, Yu L W 2025 Nat. Commun. 16 965Google Scholar

    [5]

    段聪, 刘俊杰, 陈永杰, 左慧玲, 董健生, 欧阳钢 2024 73 056801Google Scholar

    Duan C, Liu J J, Chen Y J, Zuo H L, Dong J S, Ouyang G 2024 Acta Phys. Sin. 73 056801Google Scholar

    [6]

    Sunwoo S H, Han S I, Jung D J, Kim M, Nam S, Lee H, Choi S, Kang H, Cho Y S, Yeom D H, Cha M J, Lee S, Lee S P, Hyeon T, Kim D H 2023 ACS Nano 17 7550Google Scholar

    [7]

    He H L, Qin Y, Liu J R, Wang Y S, Wang J F, Zhao Y H, Zhu Z Y, Jiang Q, Wan Y H, Qu X R, Yu Z C 2023 Chem. Eng. J. 460 141661Google Scholar

    [8]

    Zhao Z Q, Li Q J, Dong Y, Gong J X, Li Z, Zhang J F 2022 ACS Appl. Mater. Interfaces 14 18884Google Scholar

    [9]

    Chen C, Wang R, Li X L, Zhao B, Wang H, Zhou Z, Zhu J H, Liu J W 2022 Nano Lett. 22 4131Google Scholar

    [10]

    Wang K X, Yap L W, Gong S, Wang R, Wang S J, Cheng W L 2021 Adv. Funct. Mater. 31 2008347Google Scholar

    [11]

    Liu X L, Feng T, Meng X Y, Wen S F, Hou W H, Ding J H, Lin H J, Yue Z F 2023 J. Alloys Compd. 960 170934Google Scholar

    [12]

    Zhou L, Fu Y W, Yin T, Tian X F, Qi L H 2019 Ceram. Int. 45 22571Google Scholar

    [13]

    Shah M, Wu Y X, Chen S L, Mead J L, Hou L Z, Liu K, Tao S H, Fatikow S, Wang S L 2025 J. Phys. D: Appl. Phys. 58 083001Google Scholar

    [14]

    Mead J L, Wang S L, Zimmermann S, Fatikow S, Huang H 2023 Engineering 24 39Google Scholar

    [15]

    Yibibulla T, Hou L Z, Mead J L, Huang H, fatikow S, Wang S L 2024 Nanoscale Adv. 6 3251Google Scholar

    [16]

    Zhang W W, Yao Z J, Liu H, Liu J H, Li M Y, Li F Q, Chen H T 2023 Microelectron. Reliab. 151 115236Google Scholar

    [17]

    Kim J, Choi J S, Lim S, Moon S E, Im J P, Kim J H, Kang S M 2022 Small Struct. 3 2200023Google Scholar

    [18]

    Li W T, Zhang H, Shi S W, Xu J X, Qin X, He Q Q, Yang K, Dai W B, Liu G, Zhou Q G, Yu H Z, Silva S R, Fahlman M 2020 J. Mater. Chem. C 8 4636Google Scholar

    [19]

    Jia C C, Lin Z Y, Huang Y, Duan X F 2019 Chem. Rev. 119 9074Google Scholar

    [20]

    Zhao Y P, Wang L S, Yu T X 2003 J. Adhes. Sci. Technol. 17 519Google Scholar

    [21]

    He Y, Xu H K, Ouyang G 2022 Chin. Phys. B 31 110502Google Scholar

    [22]

    Mastrangelo C 1997 Tribol. Lett. 3 223Google Scholar

    [23]

    Israelachvili J N 2010 Intermolecular and Surface Forces (London, UK: Academic Press

    [24]

    Wei Z X, Lin K, Wang X H, Zhao Y P 2021 Compos. Part A Appl. Sci. Manuf. 150 106592Google Scholar

    [25]

    Mead J L, Wang S L, Zimmermann S, Huang H 2020 Nanoscale 12 8237Google Scholar

    [26]

    Klauser W, Nasrullayev T, Fatikow S 2023 J. Vac. Sci. Technol. B 41 052802Google Scholar

    [27]

    Manoharan M, Haque M 2009 J. Phys. D: Appl. Phys. 42 095304Google Scholar

    [28]

    Mead J L, Xie H T, Wang S L, Huang H 2018 Nanoscale 10 3410Google Scholar

    [29]

    Akhtar N, Song X D, Liu R Z, Asif M, Mead J L, Hou L Z, Wang S L 2024 Appl. Phys. Lett. 125 251601Google Scholar

    [30]

    Sychev D, Schubotz S, Besford Q A, Fery A, Auernhammer G K 2023 J. Colloid Interface Sci. 642 216Google Scholar

    [31]

    Strus M, Zalamea L, Raman A, Pipes R, Nguyen C, Stach E 2008 Nano Lett. 8 544Google Scholar

    [32]

    Roenbeck M R, Wei X, Beese A M, Naraghi M, Furmanchuk A o, Paci J T, Schatz G C, Espinosa H D 2014 ACS nano 8 124Google Scholar

    [33]

    Sui C, Luo Q T, He X D, Tong L Y, Zhang K, Zhang Y Y, Zhang Y, Wu J Y, Wang C 2016 Carbon 107 651Google Scholar

    [34]

    Kim D, Cha B J, Guo H, Gao G H, Pennington C, Wong M S, Getachew B A, Han Y M 2024 Nano Lett. 24 6038Google Scholar

    [35]

    Yibibulla T, Jiang Y J, Wang S L, Huang H 2021 Appl. Phys. Lett. 118 043103Google Scholar

    [36]

    Roy A, Ju S-p, Wang S L, Huang H 2019 Nanotechnology 30 065705Google Scholar

    [37]

    Ma L, Jiang Y J, Dai G Z, Mead J L, Yibibulla T, Lu M Y, Huang H, Fatikow S, Wang S L 2022 J. Phys. D: Appl. Phys. 55 364001Google Scholar

    [38]

    Mastrangelo C H, Hsu C H 1992 Technical Digest IEEE Solid-State Sensor and Actuator Workshop Hilton Head, USA, June 22–25, 1992 p208

    [39]

    DelRio F W, de Boer M P, Knapp J A, David Reedy E, Clews P J, Dunn M L 2005 Nat. Mater. 4 629Google Scholar

    [40]

    DelRio F W, Dunn M L, Phinney L M, Bourdon C J, De Boer M P 2007 Appl. Phys. Lett. 90 163104Google Scholar

    [41]

    Chen S L, Li W J, Li X X, Yang W Y 2019 Prog. Mater. Sci 104 138Google Scholar

    [42]

    Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301Google Scholar

    [43]

    Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Bando Y, Golberg D 2011 Prog. Mater. Sci 56 175Google Scholar

    [44]

    Bergstrom L 1997 Adv. Colloid Interface Sci. 70 125Google Scholar

  • [1] YIN Xuetong, LIAO Dunyuan, PAN Dong, WANG Peng, LIU Bingbing. Room-temperature photoluminescence in GaAsSb nanowires under high-pressure. Acta Physica Sinica, doi: 10.7498/aps.74.20250042
    [2] Shang Shuai-Peng, Lu Yong-Jun, Wang Feng-Hui. Surface effects on buckling of nanowire electrode. Acta Physica Sinica, doi: 10.7498/aps.71.20211864
    [3] Gao Feng-Ju. Calculation of coherent X-ray diffraction from bent Cu nanowires. Acta Physica Sinica, doi: 10.7498/aps.64.138102
    [4] Li Jing, Feng Yan-Hui, Zhang Xin-Xin, Huang Cong-Liang, Yang Mu. Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering. Acta Physica Sinica, doi: 10.7498/aps.62.186501
    [5] Zhou Yu, Zhang La-Bao, Jia Tao, Zhao Qing-Yuan, Gu Min, Qiu Jian, Kang Lin, Chen Jian, Wu Pei-Heng. Response properties of NbN superconductor nanowire for multi-photon. Acta Physica Sinica, doi: 10.7498/aps.61.208501
    [6] Zhou Guo-Rong, Teng Xin-Ying, Wang Yan, Geng Hao-Ran, Hur Bo-Young. Size effect on the freezing behavior of aluminum nanowires. Acta Physica Sinica, doi: 10.7498/aps.61.066101
    [7] Zhang La-Bao, Kang Lin, Chen Jian, Zhao Qing-Yuan, Jia Tao, Xu Wei-Wei, Cao Chun-Hai, Jin Biao-Bing, Wu Pei-Heng. Fabrication of superconducting nanowiresingle-photon detector. Acta Physica Sinica, doi: 10.7498/aps.60.038501
    [8] Zhang Fu-Chun, Zhang Wei-Hu, Dong Jun-Tang, Zhang Zhi-Yong. Electronic structure and magnetism of Cr-doped ZnO nanowires. Acta Physica Sinica, doi: 10.7498/aps.60.127503
    [9] Meng Li-Jun, Xiao Hua-Ping, Tang Chao, Zhang Kai-Wang, Zhong Jian-Xin. Formation and thermal stability of compound stucture of carbon nanotube and silicon nanowire. Acta Physica Sinica, doi: 10.7498/aps.58.7781
    [10] Xu Zhen-Hai, Yuan Lin, Shan De-Bin, Guo Bin. Atomistic simulation of yield mechanism of single crystal copper nanowires. Acta Physica Sinica, doi: 10.7498/aps.58.4835
    [11] Zhang Kai-Wang, Meng Li-Jun, Li Jun, Liu Wen-Liang, Tang Yi, Zhong Jian-Xin. Structure and thermal stability of gold nanowire encapsulated in carbon nanotube. Acta Physica Sinica, doi: 10.7498/aps.57.4347
    [12] Lü Hui-Min, Chen Guang-De, Yan Guo-Jun, Ye Hong-Gang. The growth mechanism of monocrystal aluminum nitride nanowires at low temperature. Acta Physica Sinica, doi: 10.7498/aps.56.2808
    [13] Yang Jiong, Zhang Wen-Qing. Structural stability of Se and Te nanowires. Acta Physica Sinica, doi: 10.7498/aps.56.4017
    [14] Lei Da, Zeng Le-Yong, Xia Yu-Xue, Chen Song, Liang Jing-Qiu, Wang Wei-Biao. Study on field enhancement of a normal-gated field emission nanowire cold cathode. Acta Physica Sinica, doi: 10.7498/aps.56.6616
    [15] Hu Li-Qin, Lin Zhi-Xian, Guo Tai-Liang, Yao Liang, Wang Jing-Jing, Yang Chun-Jian, Zhang Yong-Ai, Zheng Ke-Lu. Field-emission properties of aligned and unaligned In2O3 nanowires. Acta Physica Sinica, doi: 10.7498/aps.55.6136
    [16] Yuan Shu-Juan, Zhou Shi-Ming, Lu Mu. Ferromagnetic resonance study of Ni nanowire arrays. Acta Physica Sinica, doi: 10.7498/aps.55.891
    [17] Li Zhi-Jie, Pan Xue-Ling, Sun Wei-Min, Qu Jia-Hui, Wang Fu. Production and character of Al3O3N nanowires. Acta Physica Sinica, doi: 10.7498/aps.54.450
    [18] Meng Fan-Bin, Hu Hai-Ning, Li Yang-Xian, Chen Gui-Feng, Chen Jing-Lan, Wu Guang-Heng. X-ray diffraction investigation of single-crystal Co nanowires. Acta Physica Sinica, doi: 10.7498/aps.54.384
    [19] Sun Jin-Peng, Wang Tai-Hong. . Acta Physica Sinica, doi: 10.7498/aps.51.2096
    [20] XIAO JUN-JUN, SUN CHAO, XUE DE-SHENG, LI FA-SHEN. STUDY ON MAGNETIC PROPERTIES OF Fe-NANOWIRES BY MICROMAGNETIC SIMULATION. Acta Physica Sinica, doi: 10.7498/aps.50.1605
Metrics
  • Abstract views:  269
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  04 July 2025
  • Accepted Date:  16 September 2025
  • Available Online:  24 September 2025
  • /

    返回文章
    返回
    Baidu
    map