Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Emergence of scaling in random hypernetworks

GUO Zhaohua GUO Peng MIAO Rui GUO Jinli YUAN Yuan

Citation:

Emergence of scaling in random hypernetworks

GUO Zhaohua, GUO Peng, MIAO Rui, GUO Jinli, YUAN Yuan
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Complex networks are powerful tools for characterizing and analyzing complex systems, with wide applications in fields such as physics, sociology, technology, biology, and port terminal management. One of the core issues in complex networks is the mechanism behind the emergence of scaling laws. In real-world networks, the mechanisms underlying the emergence of scaling laws may be highly complex, making it difficult to design network evolution mechanisms that fully align with reality. Explaining real networks through simple mechanisms is a meaningful research topic. Since Barabási and Albert discovered that growth and linear preferential attachment are mechanisms that generate power-law distributions, scholars have identified various forms of preferential attachment that produce power-law degree distributions. However, the most famous and useful one remains the linear preferential attachment in the BA model. Can scale-free behavior also emerge from random attachment and growth? In traditional network analysis, nodes are assumed to join the system at discrete, equally spaced time intervals, often based on the unfounded assumption that interarrival times follow a uniform distribution. In reality, nodes arrive randomly, and their interarrival times do not necessarily follow a uniform distribution. Although complex networks have flourished over the past two decades, they still cannot fully describe real systems with multiple interactions. Hypernetworks, which capture interactions involving more than two nodes, have become an important subject of study, and the mechanisms underlying the emergence of scaling in hypernetworks are a key research focus. The paper first introduces the concept of cliques in hypernetworks. A 1-element clique is a node, a 2-element clique is an edge in a complex network, a 3-element clique represents a triangle in higher-order networks, and a 4-element clique corresponds to a tetrahedron in higher-order networks. Secondly, we propose a clique-driven random hypernetwork evolution model. By combining stochastic processes, nodes arrive in continuous time, which better reflects real-world scenarios and provides a justified distribution for node interarrival times. Using Poisson process theory, we analyze the clique-driven random hypernetwork evolution model, avoiding arbitrary assumptions about node interarrival time distributions commonly made in traditional network analysis, thereby making the network analysis more rigorous. We derive an analytical expression for the cumulative degree distribution and the power-law exponent of the node degree distribution. Finally, we validate the theoretical predictions through computer simulations and empirical analysis of collected real-world data. The results show that the clique-driven random hypernetwork evolution model employs a simple connection mechanism, and that scale-free behavior emerges from growth and random attachment in higher-order structural networks. In our model, not only do nodes join the network in continuous time, but new nodes also randomly select d-element cliques, resulting in a power-law degree distribution. When d = 2, the power-law exponent of the node degree distribution in our model matches that of the BA model. When d > 2, the power-law exponent of the degree distribution depends on the number of elements of the driving clique (simplex dimension). We can directly estimate the power-law exponent of the model's degree distribution using the number of elements of the driving clique.
  • 图 1  模型前两步演化示意图 (a) $ N\left(t\right)=0; $ (b) $ N\left(t\right)=1; $ (c) $ N\left(t\right)=2 $

    Figure 1.  Schematic illustration of the first two steps of the evolution for the model: (a) $ N\left(t\right)=0; $ (b) $ \text{N}\left(t\right)=1; $ (c) $ \text{N}\left(t\right)=2 $.

    图 2  模型的累积度分布与回归曲线, 横轴是度, 纵轴是累积度分布$ {P}_{\mathrm{c}\mathrm{u}\mathrm{m}}\left(k\right) $ (a) $ d=2, m=1 $时模型的累积度分布与回归曲线, 回归曲线的相关系数$ R=-0.9825 $, 幂律指数$ \tau =2.013 $; (b) $ d=3, m=1 $时模型的累积度分布与回归曲线, 回归曲线的相关系数$ R=-0.9934 $, 幂律指数$ \tau =1.565 $

    Figure 2.  The cumulative degree distribution and regression curve of the model, the horizontal axis represents degrees and the vertical axis represents the cumulative degree distribution $ {P}_{\mathrm{c}\mathrm{u}\mathrm{m}}\left(k\right) $: (a) The cumulative degree distribution and regression curve of the model when $ d=2, m=1 $, the correlation coefficient of the regression curve is $ R=-0.9825 $, and the power-law exponent is $ \tau =2.013 $; (b) the cumulative degree distribution and regression curve of the model when $ d=3, m=2 $, the correlation coefficient of the regression curve is:$ R=-0.9934 $, and the power-law exponent is: $ \tau =1.565 $.

    图 3  $ d=2 $时模型的累积度分布与理论预测曲线, 横轴是度, 纵轴是累积度分布$ {P}_{\mathrm{c}\mathrm{u}\mathrm{m}}\left(k\right) $, 蓝色+表示模型的模拟值, 红色实线对应于方程(5)给出的理论预测值, 幂律指数为$ \tau =2 $ (a) $ m=1 $时模型的累积度分布模拟值与理论预测曲线; (b) $ m=2 $时模型的累积度分布模拟值与理论预测曲线

    Figure 3.  The cumulative degree distribution and theoretical prediction curve of the model with $ d=2 $, the horizontal axis represents degrees and the vertical axis represents the cumulative degree distribution $ {P}_{\mathrm{c}\mathrm{u}\mathrm{m}}\left(k\right), $ the blue + denotes the simulation value of the model. The red solid line corresponds to the theoretical predicted value given by Eq. (5), and the power-law exponent is $ \tau =2 $: (a) The cumulative degree distribution and theoretical prediction curve of the model when $ m=1 $; (b) the cumulative degree distribution and theoretical prediction curve of the model when $ m=2 $.

    图 4  $ d=3 $时模型的累积度分布与理论预测曲线, 横轴是度, 纵轴是累积度分布$ {P}_{\mathrm{c}\mathrm{u}\mathrm{m}}\left(k\right) $, 蓝色+表示模型的模拟值, 红色实线对应于方程(5)给出的理论预测值, 幂律指数为$ \tau =1.5 $, 其余部分与图3相同

    Figure 4.  The cumulative degree distribution and theoretical prediction curve of the model with $ d=3, $ the horizontal axis represents degrees and the vertical axis represents the cumulative degree distribution $ {P}_{\mathrm{c}\mathrm{u}\mathrm{m}}\left(k\right) $, the blue + denotes the simulation value of the model, the red solid line corresponds to the theoretical predicted value given by Eq. (5), and the power-law exponent is $ \tau =1.5 $, the rest of the caption is the same as that in Fig. 3.

    图 5  新能源汽车专利合作超网络的累积度分布, 网络规模的是N = 1582, 蓝色叉表示新能源汽车专利合作超网络的累积度分布, 红色实线表示回归拟合曲线, 相关系数$ R=-0.9916 $, 累积度分布的幂律指数$ \tau =1.962 $

    Figure 5.  The cumulative degree distribution of the new energy vehicle patent cooperation hypernetwork, the network scale is N = 1582, the blue cross denotes the cumulative degree distribution of the new energy vehicle patent cooperation hypernetwork, the red solid line represents the regression fitting curve, with a correlation coefficient $ R= $$ -0.9916 $, and the power-law exponent of the cumulative degree distribution is $ \tau =1.962 $.

    图 6  下秩3的科学家合作超网络累积度分布, 网络规模的是N = 1830, 蓝色叉表示下秩3的科学家合作超网络累积度分布. 红色实线表示回归拟合曲线, 相关系数$ R= $$ -0.9766 $, 累积度分布的幂律指数$ \tau =1.88 $

    Figure 6.  The accumulation degree distribution of the scientist cooperative hypernetwork with the lower rank 3, the network scale is N = 1830, the blue cross denotes the cumulative degree distribution of the hypernetwork. The red solid line represents the regression fitting curve, with a correlation coefficient $ R=-0.9766 $, and the power-law exponent of the cumulative degree distribution is $ \tau =1.88 $.

    图 7  下秩4的科学家合作超网络累积度分布, 网络规模的是N = 1342, 蓝色叉表示下秩4的科学家合作超网络累积度分布, 红色实线表示回归拟合曲线, 相关系数$ R= $$ -0.9833 $, 累积度分布的幂律指数$ \tau =1.524 $

    Figure 7.  The accumulation degree distribution of the scientist cooperative hypernetwork with the lower rank 4, the network scale is N = 1342, the blue cross denotes the cumulative degree distribution of the hypernetwork, the red solid line represents the regression fitting curve, with a correlation coefficient $ R=-0.9833 $, and the power-law exponent of the cumulative degree distribution is $ \tau =1.542 $.

    Baidu
  • [1]

    Redner S 1998 Euro. Phys. J. B 4 131Google Scholar

    [2]

    Kumar R, Raghavan P, Rajalopagan S, Tomkins A 1999 Proceedings of the 9th ACM Symposium on Principles of Database Systems 1

    [3]

    Faloutsos M, Faloutsos P, Faloutsos C 1999 Proc. ACM SIGCOMM, Comput. Commun. Rev. 29 251Google Scholar

    [4]

    Barabási A L, Albert R 1999 Science 286 509Google Scholar

    [5]

    郭进利 2013 复杂网络和人类行为动力学演化模型(北京: 科学出版社)

    Guo J L 2013 Evolving Models of Complex Networks and Human Behavior Dynamics (Beijing: Science Press

    [6]

    汪小帆, 李翔, 陈关荣 2012 网络科学导论(北京: 高等教育出版社)

    Wang X F, Li X, Chen G R 2012 Networks Science: An Introduction (Beijing: Higher Education Press

    [7]

    Boccaletti S, De Lellis P, del Genio C I, Alfaro-Bittner K, Criado R, Jalan S, Romance M 2023 Phys. Rep. 1018 1Google Scholar

    [8]

    Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J G, Petri G 2020 Phys. Rep. 874 1Google Scholar

    [9]

    胡枫, 刘猛, 赵静, 雷蕾 2018 复杂系统与复杂性科学 15 31

    Hu F, Liu M, Zhao J, Lei L 2018 Complex Systs. Complexity Sci. 15 31

    [10]

    Zhang K, Gao J Y, Zhao H X, Hu W J, Miao M M, Zhang Z K 2025 Physica A 666 130512Google Scholar

    [11]

    Wang J W, Rong L L, Deng Q H, Zhang J Y 2010 Eur. Phys. J. B 77 493Google Scholar

    [12]

    胡枫, 赵海兴, 马秀娟 2013 中国科学: 物理学 力学 天文学 43 16

    Hu F, Zhao H X, Ma X J 2013 Sci. Sin. Phys. Mech. Astron. 43 16

    [13]

    郭进利, 祝昕昀 2014 63 090207Google Scholar

    Guo J L, Zhu X Y 2014 Acta Phys. Sin. 63 090207Google Scholar

    [14]

    胡枫, 赵海兴, 何佳倍, 李发旭, 李淑玲, 张子柯 2013 62 198901Google Scholar

    Hu F, Zhao H X, He J B, Li F X, Li S L, Zhang Z K 2013 Acta Phys. Sin. 62 198901Google Scholar

    [15]

    Bianconi G 2021 Higher-Order Networks-An Introduction to Simplicial Complexes (London: Cambridge University Press Inc. ) pp61–68

    [16]

    Bianconi G, Rahmede C 2016 Phys. Rev. E 93 032315

    [17]

    Fountoulakis N, Iyer T, Mailler C, Sulzbach H 2022 Ann. Appl. Probab. 32 2860

    [18]

    Kovalenko K, Sendiña-Nadal I, Khalil N, Dainiak A, Musatov D, Raigorodskii A M, Alfaro-Bittner K, Barzel B, Boccaletti S 2021 Commun. Phys. 4 1Google Scholar

    [19]

    Courtney O T, Bianconi G 2017 Phys. Rev. E 93 062311

    [20]

    Bian J H, Zhou T, Bi Y L 2025 Commun. Phys. 8 228Google Scholar

    [21]

    Bianconi G 2024 J. Phys. A: Math. Theor. 57 015001Google Scholar

    [22]

    张科, 高靖宇, 胡文军, 张永 2023 中国科学: 物理学 力学 天文学 53 270511Google Scholar

    Zhang K, Gao J W, Hu W J, Zhang Y 2023 Sci. Sin. Phys. Mech. Astron. 53 270511Google Scholar

    [23]

    周涛, 肖伟科, 任捷, 汪秉宏 2007 复杂系统与复杂性科学 4 10

    Zhou T, Xiao W K, Ren J, Wang B H 2007 Complex Systs. Complexity Sci. 4 10

    [24]

    Bretto A 2013 Hypergraph Theory (Switzerland: Springer International Publishing Switzerland

    [25]

    Barabási A L, Albert R, Jeong H 1999 Physica A 272 173Google Scholar

  • [1] Liu Bo, Zeng Yu-Jie, Yang Rong-Mei, Lü Lin-Yuan. Fundamental statistics of higher-order networks: a survey. Acta Physica Sinica, doi: 10.7498/aps.73.20240270
    [2] Luo Kai-Ming, Guan Shu-Guang, Zou Yong. Reconstruction of simplex structures based on phase synchronization dynamics. Acta Physica Sinica, doi: 10.7498/aps.73.20240334
    [3] Li Jiang, Liu Ying, Wang Wei, Zhou Tao. Identifying influential nodes in spreading process in higher-order networks. Acta Physica Sinica, doi: 10.7498/aps.73.20231416
    [4] Chen Wei-Ying, Pan Jian-Chen, Han Wen-Chen, Huang Chang-Wei. Evolutionary public goods games on hypergraphs with heterogeneous multiplication factors. Acta Physica Sinica, doi: 10.7498/aps.70.20212436
    [5] Lu Wen, Zhao Hai-Xing, Meng Lei, Hu Feng. Double-layer hypernetwork model with bimodal peak characteristics. Acta Physica Sinica, doi: 10.7498/aps.70.20201065
    [6] Ma Xiu-Juan, Zhao Hai-Xing, Hu Feng. Cascading failure analysis in hyper-network based on the hypergraph. Acta Physica Sinica, doi: 10.7498/aps.65.088901
    [7] Guo Jin-Li. Emergence of scaling in non-uniform hypernetworksdoes the rich get richer lead to a power-law distribution?. Acta Physica Sinica, doi: 10.7498/aps.63.208901
    [8] Guo Jin-Li, Zhu Xin-Yun. Emergence of scaling in hypernetworks. Acta Physica Sinica, doi: 10.7498/aps.63.090207
    [9] Li Yu-Shan, Lü Ling, Liu Ye, Liu Shuo, Yan Bing-Bing, Chang Huan, Zhou Jia-Nan. Spatiotemporal chaos synchronization of complex networks by Backstepping design. Acta Physica Sinica, doi: 10.7498/aps.62.020513
    [10] Hu Feng, Zhao Hai-Xing, He Jia-Bei, Li Fa-Xu, Li Shu-Ling, Zhang Zi-Ke. An evolving model for hypergraph-structure-based scientific collaboration networks. Acta Physica Sinica, doi: 10.7498/aps.62.198901
    [11] Hao Chong-Qing, Wang Jiang, Deng Bin, Wei Xi-Le. Estimating topology of complex networks based on sparse Bayesian learning. Acta Physica Sinica, doi: 10.7498/aps.61.148901
    [12] Liu Gang, Li Yong-Shu. Study on the congestion phenomena in complex network based on gravity constraint. Acta Physica Sinica, doi: 10.7498/aps.61.108901
    [13] Zhou Xuan, Zhang Feng-Ming, Li Ke-Wu, Hui Xiao-Bin, Wu Hu-Sheng. Finding vital node by node importance evaluation matrix in complex networks. Acta Physica Sinica, doi: 10.7498/aps.61.050201
    [14] Cui Ai-Xiang, Fu Yan, Shang Ming-Sheng, Chen Duan-Bing, Zhou Tao. Emergence of local structures in complex network:common neighborhood drives the network evolution. Acta Physica Sinica, doi: 10.7498/aps.60.038901
    [15] Li Tao, Pei Wen-Jiang, Wang Shao-Ping. Optimal traffic routing strategy on scale-free complex networks. Acta Physica Sinica, doi: 10.7498/aps.58.5903
    [16] Lü Ling, Zhang Chao. Chaos synchronization of a complex network with different nodes. Acta Physica Sinica, doi: 10.7498/aps.58.1462
    [17] Chen Hua-Liang, Liu Zhong-Xin, Chen Zeng-Qiang, Yuan Zhu-Zhi. Research on one weighted routing strategy for complex networks. Acta Physica Sinica, doi: 10.7498/aps.58.6068
    [18] Wang Dan, Yu Hao, Jing Yuan-Wei, Jiang Nan, Zhang Si-Ying. Study on the congestion in complex network based on traffic awareness algorithm. Acta Physica Sinica, doi: 10.7498/aps.58.6802
    [19] Xu Dan, Li Xiang, Wang Xiao-Fan. An investigation on local area control of virus spreading in complex networks. Acta Physica Sinica, doi: 10.7498/aps.56.1313
    [20] Li Ji, Wang Bing-Hong, Jiang Pin-Qun, Zhou Tao, Wang Wen-Xu. Growing complex network model with acceleratingly increasing number of nodes. Acta Physica Sinica, doi: 10.7498/aps.55.4051
Metrics
  • Abstract views:  292
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2025
  • Accepted Date:  10 September 2025
  • Available Online:  24 September 2025
  • /

    返回文章
    返回
    Baidu
    map