搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水基有机溶剂液膜冻结初期表层冰片生长机制

孙宇阳 牛喻樱 宗晓晓 赵玉刚

引用本文:
Citation:

水基有机溶剂液膜冻结初期表层冰片生长机制

孙宇阳, 牛喻樱, 宗晓晓, 赵玉刚

Growth mechanism of surface ice flakes at the initial stage of freezing of water-based organic solvent liquid film

SUN Yuyang, NIU Yuying, ZONG Xiaoxiao, ZHAO Yugang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 液滴及液膜冻结广泛存在于自然界与工程应用中, 近年多组分液滴体系已揭示界面流动与溶质再分布的普遍机制. 然而, 液滴界面曲率与视场限制使对单个分离冰片的连续显微原位观测受限. 鉴于液滴与液膜在冻结过程中的界面传热与溶质传输机理具有相似性, 本文采用平坦多组分液膜体系, 观察在冷表面上对异丙醇-水二元液膜在不同过冷度下的冻结过程, 开展对单个分离冰片的显微原位研究. 实验发现冰片外形随过冷度由六棱锥逐渐转变为十二棱锥和圆锥形, 并伴随透明度下降. 建立了考虑溶质扩散、热扩散与马兰戈尼效应的物理模型, 揭示了冰片形貌变化的主导机制. 结果表明, 冰片结构演化受溶质浓度梯度主导, 流动与扩散的竞争控制其各向异性生长特征. 本文为多组分液膜冻结过程中的界面动力学提供了新见解.
    Freezing of multicomponent droplets and thin films is ubiquitous in natural environments and engineered settings. Previous studies on multicomponent droplets, including Marangoni-driven self-lifting droplets and soap-bubble freezing, have identified the roles of interfacial flow and solute redistribution, often exhibiting a snow-globe effect of migrating ice particles. Curvature and field-of-view constraints in droplet systems hinder continuous observation of a single object. Here, utilizing the comparability of interfacial heat and mass transfer between droplets and films, we employ a flat isopropanol-water binary film on a cooled substrate to achieve high-resolution, time-resolved in-situ microscopy observation of individual separated ice flakes within a supercooling (ΔT) range of the substrate. Experiments show that with the increase of ΔT, the external shape of ice flakes evolves from hexagonal pyramid to dodecagonal pyramid and ultimately to a nearly-conical form, accompanied by the decrease of transparency. We quantify morphological evolution by using a shape factor β and qualitatively distinguish crystal-structure differences by combining bright-field and dark-field microscopy. A minimal model that couples solute and thermal diffusion with Marangoni stress rationalizes the observations: solute-concentration gradients primarily drive structural evolution, while the competition between advection and diffusion governs anisotropic growth. These results provide mechanistic insight into interfacial freezing dynamics of multi-component liquid films and establish flat-film microscopy as a platform for single-flake kinetics.
  • 图 1  (a) 实验装置示意图; (b) 硅片处理前后接触角对比; (c) $\Delta T = \left( {5.5 \pm 0.1} \right)$ ℃时异丙醇-水液膜冻结过程; (d), (e) 对单个冰片的显微观察的时间起点和终点

    Fig. 1.  (a) Schematic diagram of the experimental setup; (b) comparison of contact angles before and after plasma treatment of monocrystalline silicon wafers; (c) freezing process of isopropanol-water liquid film at $\Delta T = \left( {5.5 \pm 0.1} \right)$ ℃; (d), (e) the beginning and ending of microscopic observation of a single ice flake.

    图 2  (a), (b) 不同过冷度下冰片生长动力学过程 (a) $\Delta T = \left( {4.1 \pm 0.1} \right)$ ℃; (b) $\Delta T = \left( {12.6 \pm 0.1} \right)$ ℃. (c), (d) 不同过冷度下冰片轮廓的变化 (c) $\Delta T = \left( {4.1 \pm 0.1} \right)$ ℃; (d) $\Delta T = \left( {12.6 \pm 0.1} \right)$ ℃

    Fig. 2.  (a), (b) Kinetic processes of ice flakes growth at different supercooling degrees: (a) $\Delta T = \left( {4.1 \pm 0.1} \right)$ ℃; (b) $\Delta T = $$ \left( {12.6 \pm 0.1} \right)$ ℃; (c), (d) Changes of ice flake profiles at different supercooling degrees: (c) $\Delta T = \left( {4.1 \pm 0.1} \right)$ ℃; (d) $\Delta T = $$ \left( {12.6 \pm 0.1} \right)$ ℃.

    图 3  明场以及暗场观察对比 (a) 明场观察示意图; (b) 暗场观察示意图; (c) $\Delta T = \left( {4.1 \pm 0.1} \right)$ ℃暗场下无法观察到冰片, 冰片几乎透明; (d) $\Delta T = \left( {12.6 \pm 0.1} \right)$ ℃暗场下观察到冰片为白色且不透明

    Fig. 3.  Comparison of bright-field as well as dark-field observation: (a) Schematic of bright-field observation; (b) schematic of dark-field observation; (c) ice flakes could not be observed in the dark-field at $\Delta T = \left( {4.1 \pm 0.1} \right)$ ℃, and the ice flakes were almost transparent; (d) ice flakes were observed to be white and opaque in the dark-field at $\Delta T = \left( {12.6 \pm 0.1} \right)$ ℃.

    图 4  (a) 不同过冷度下分离冰片形貌; (b) 形状因子定义; (c) 形状因子随过冷度变化规律

    Fig. 4.  (a) Morphology of separated ice flakes at different supercooling degrees; (b) definition of shape factor; (c) variation rule of shape factor with supercooling degree.

    图 5  物理机制示意图 (a) 低过冷度下结冰偏析与马兰戈尼流的产生; (b) 过冷度增加溶质扩散减弱, 浓度差增加马兰戈尼流增强, 冰片加速生长; (c) 大过冷度下马兰戈尼流减弱导致溶质富集

    Fig. 5.  Schematic diagram of the physical mechanism: (a) Icing segregation and production of Marangoni flow at low subcooling; (b) weakened solute diffusion, enhanced Marangoni flow, and accelerated growth of ice flakes at increasing subcooling; (c) weakened Marangoni flow at large subcooling leading to solute enrichment.

    图 6  (a) 冰片水平方向生长速度定义; (b) 冰片水平方向生长速度随过冷度变化

    Fig. 6.  (a) Definition of the horizontal growth velocity of the ice flakes; (b) horizontal growth velocity versus supercooling.

    图 7  冰片生长不同生长模式相图

    Fig. 7.  Phase diagram of different growth modes of ice flakes.

    Baidu
  • [1]

    Wu X M, Chu F Q, Ma Q, Zhu B 2017 Appl. Therm. Eng. 118 448Google Scholar

    [2]

    Li L Y, Liu Z L, Li Y X, Dong Y W 2017 Int. J. Heat Mass Transfer 113 166Google Scholar

    [3]

    Li K, Miao Y M, Xia D Y, Liu N, Zhang H, Dou B L, He Q Z, Zhao Y G, Li C, Mohtaram S 2024 Appl. Therm. Eng. 248 123282Google Scholar

    [4]

    Wang P, Zhou W S, Bao Y Q, Li H 2018 Struct Control Health Monit. 25 e2138Google Scholar

    [5]

    Wei K X, Yang Y, Zuo H Y, Zhong D Q 2020 Wind Energy 23 433Google Scholar

    [6]

    Cebeci T, Kafyeke F 2003 Annu. Rev. Fluid Mech. 35 11Google Scholar

    [7]

    Cao Y, Wu Z, Su Y, Xu Z 2015 Prog. Aeronaut. Sci. 74 62Google Scholar

    [8]

    胡海宝, 何强, 于思晓, 张兆珠, 宋东 2016 57 4667

    Hu H B, He Q, Yu S X, Zhang Z Z, Song D 2016 Acta Phys. Sin. 65 104703

    [9]

    He Z W, Zhuo Y Z, Wang F, He J Y, Zhang Z L 2019 Soft Matter 15 2905Google Scholar

    [10]

    Ji K P, Rui X M, Li L, Leblond A, McClure G 2015 Comput. Struct. 157 153Google Scholar

    [11]

    Gurganus C, Kostinski A B, Shaw R A 2011 J. Phys. Chem. Lett. 2 1449Google Scholar

    [12]

    Gurganus C, Kostinski A B, Shaw R A 2013 J. Phys. Chem. C 117 6195Google Scholar

    [13]

    Inada T, Tomita H, Koyama T 2014 Int. J. Refrig. 40 294Google Scholar

    [14]

    Fletcher N H 1958 J. Chem. Phys. 29 572Google Scholar

    [15]

    Wildeman S, Sterl S, Sun C, Lohse D 2017 Phys. Rev. Lett. 118 084101Google Scholar

    [16]

    Jung S, Tiwari M K, Doan N V, Poulikakos D 2012 Nat. Commun. 3 615Google Scholar

    [17]

    Wang Y, Cheng Y 2019 Int. J. Heat Mass Transfer 140 1023Google Scholar

    [18]

    Peppin S S L, Elliott J A W, Worster M G 2006 J. Fluid Mech. 554 147Google Scholar

    [19]

    Zhao Y, Yan Z, Zhang H, Yang C, Cheng P 2021 Int. J. Heat Mass Transfer 165 120609Google Scholar

    [20]

    Marín A G, Enríquez O R, Brunet P, Colinet P, Snoeijer J H 2014 Phys. Rev. Lett. 113 054301Google Scholar

    [21]

    Yan X, Au S C Y, Chan S C, Chan Y L, Leung N C, Wu W Y, Sin D T, Zhao G L, Chung C H Y, Mei M, Yang Y C, Qiu H H, Yao S S 2024 Nat. Commun. 15 1567Google Scholar

    [22]

    Lyu S, Zhu X, Legendre D, Sun C 2023 Droplet 2 e90Google Scholar

    [23]

    Fang W Z, Zhu F Q, Zhu L L, Tao W Q, Yang C 2022 Commun. Phys. 5 51Google Scholar

    [24]

    Jin P H, Yan X, Hoque M J, Rabbi K F, Sett S, Ma J C, Li J Q, Fang X L, Carpenter J, Cai S J, Tao W Q, Miljkovic N 2022 Cell Rep. Phys. Sci. 3 100894Google Scholar

    [25]

    张旋, 刘鑫, 吴晓敏, 闵敬春 2020 工程热 41 402

    Zhang X, Liu X, Wu X M, Min J C 2020 J. Eng. Thermophys. 41 402

    [26]

    董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶 2018 67 054702Google Scholar

    Dong Q Q, Hu H B, Chen S Q, He Q, Bao L Y 2018 Acta Phys. Sin. 67 054702Google Scholar

    [27]

    Ivall J, Hachem M, Coulombe S, Servio P 2015 Cryst. Growth Des. 15 3969Google Scholar

    [28]

    Zhao Y, Yang C, Cheng P 2021 Appl. Phys. Lett. 118 14

    [29]

    Jiang Y P, Zhao Y G, Zhang H, Yang C, Cheng P 2024 Cell Rep. Phys. Sci. 5 4

    [30]

    Zeng H, Wakata Y, Chao X, Li M B, Sun C 2023 J. Colloid and Interf. Sci. 648 736Google Scholar

    [31]

    Dang Q, Song M L, Dang C B, Zhan T Z, Zhang L 2022 Langmuir 38 7846Google Scholar

    [32]

    Miao Y M, Zhao Y G, Gao M, Yang L, Yang C 2022 Appl. Phys. Lett. 120 091602Google Scholar

    [33]

    Chu F Q, Li S X, Zhao C J, Feng Y H, Lin Y K, Wu X M, Yan X, Miljkovic N 2024 Nat. Commun. 15 2249Google Scholar

    [34]

    Schutzius T M, Jung S, Maitra T, Graeber G, Köhme M, Poulikakos D 2015 Nature 527 82Google Scholar

    [35]

    Graeber G, Schutzius T M, Eghlidi H, Poulikakos D 2017 Proc. Natl. Acad. Sci. 114 11040Google Scholar

    [36]

    Zhuo Y H, Xiao S B, Håkonsen V, He J Y, Zhang Z L 2020 ACS Mater. Lett. 2 616Google Scholar

    [37]

    Zhu Z B, Zhang X, Zhao Y G, Huang X Y, Yang C 2022 Int. J. Therm. Sci. 171 107241Google Scholar

    [38]

    Lambley H, Graeber G, Vogt R, Gaugler L C, Baumann E, Schutzius T M, Poulikakos D 2023 Nat. Phys. 19 649

    [39]

    褚福强, 吴晓敏, 朱毅 2017 工程热 38 352

    Chu F Q, Wu X M, Zhu Y 2017 J. Eng. Thermophys. 38 352

    [40]

    Chen R H, Phuoc T X, Martello D 2011 Int. J. Heat Mass Transfer 54 2459Google Scholar

    [41]

    Bhuiyan M H U, Saidur R, Amalina M A, Mostafizur R M, Islam A 2015 Procedia Eng. 105 431Google Scholar

    [42]

    Ahmadi S F, Nath S, Kingett C M, Yue P, Boreyko J B 2019 Nat. Commun. 10 2531Google Scholar

    [43]

    Wang F, Chen L, Li Y Q, Huo P, Gu X, Hu M, Deng D S 2024 Phys. Rev. Lett. 132 014002Google Scholar

    [44]

    Wang F, Zeng H, Du Y, Tang X, Sun C 2024 arXiv: 2407.20555v1 [physics. flu-dyn]

    [45]

    Moore M R, Mughal M S, Papageorgiou D T 2017 J. Fluid Mech. 817 455Google Scholar

    [46]

    Thiévenaz V, Josserand C, Séon T 2020 Phys. Rev. Fluids 5 041601Google Scholar

    [47]

    Schremb M, Campbell J M, Christenson H K, Tropea C 2017 Langmuir 33 4870Google Scholar

    [48]

    Campbell J M, Sandnes B, Flekkøy E G, Måløy K J 2022 Cryst. Growth Des. 22 2433Google Scholar

    [49]

    Babich A, Bashkatov A, Yang X, Mutschke G, Eckert K 2023 Int. J. Heat Mass Transfer 215 124466Google Scholar

    [50]

    Tokgoz S, Geisler R, van Bokhoven L J A, Wieneke B 2012 Meas. Sci. Technol. 23 115302Google Scholar

    [51]

    Zhang M K, Gao C, Ye B, Tang J C, Jiang B 2019 Cryobiology 86 47Google Scholar

    [52]

    Li J Q, Rahman M, Patel S, Bogner R H, Fan T H 2022 Cryst. Growth Des. 22 6917Google Scholar

    [53]

    Kurz W, Fisher D J 1992 Fundamentals of Solidification 5th Edition (Switzerland: Trans Tech Publication Ltd) pp56–59

    [54]

    Libbrecht K 2017 Annu. Rev. Mater. Res. 47 271Google Scholar

    [55]

    Zhao Y, Guo Q, Lin T, Cheng P 2020 Int. J. Heat Mass Transfer 159 120074Google Scholar

    [56]

    Lohse D, Zhang X 2020 Nat. Rev. Phys. 2 426Google Scholar

    [57]

    Kitahata H, Yoshinaga N 2018 J. Chem. Physi. 148 134906Google Scholar

    [58]

    Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444Google Scholar

    [59]

    Dehaoui A, Issenmann B, Caupin F 2015 Proc. Natl. Acad. Sci. 112 12020Google Scholar

    [60]

    Pothoczki S, Pethes I, Pusztai L, Temleitner L, Csókás D, Kohara S, Ohara K, Bakó I 2021 J. Mol. Liq. 329 115592Google Scholar

  • [1] 谢科薇, 陶金成, 董裕力, 翁雨燕, 杨俊义, 方亮. 二元混合物在液体层上发生马兰戈尼爆裂的研究.  , doi: 10.7498/aps.73.20231364
    [2] 孟令知, 苑立波. 离散波导热扩散耦合机理及其应用.  , doi: 10.7498/aps.72.20230204
    [3] 刘征宇, 杨昆, 魏自红, 姚利阳. 包含液相扩散方程简化的锂离子电池电化学模型.  , doi: 10.7498/aps.68.20190159
    [4] 任峰, 阴生毅, 卢志鹏, 李阳, 王宇, 张申金, 杨峰, 卫东. 深紫外激光光发射与热发射电子显微镜在热扩散阴极研究中的应用.  , doi: 10.7498/aps.66.187901
    [5] 李晓丽, Sun Jian-Gang, 陶宁, 曾智, 赵跃进, 沈京玲, 张存林. 非线性拟合方法用于透射式脉冲红外技术测试碳/碳复合材料的热扩散系数.  , doi: 10.7498/aps.66.188702
    [6] 谢蒂旎, 彭洪尚, 黄世华, 由芳田, 王小卉. 水热法促进EuVO4@YVO4核壳结构纳米颗粒中Eu3+的扩散及其对发光性能的影响.  , doi: 10.7498/aps.63.147801
    [7] 汤富领, 陈功宝, 谢勇, 路文江. Al表面的"类液"结构及其自扩散通道.  , doi: 10.7498/aps.60.066801
    [8] 张丽, 刘树堂. 薄板热扩散分形生长的环境干扰控制.  , doi: 10.7498/aps.59.7708
    [9] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究.  , doi: 10.7498/aps.57.7157
    [10] 颜利芬, 王红成, 佘卫龙. 扩散效应对光伏孤子相互作用的影响.  , doi: 10.7498/aps.55.5257
    [11] 倪 经, 蔡建旺, 赵见高, 颜世申, 梅良模, 朱世富. Fe/Si多层膜的层间耦合与界面扩散.  , doi: 10.7498/aps.53.3920
    [12] 张先梅, 万宝年, 阮怀林, 吴振伟. HT-7托卡马克等离子体欧姆放电时电子热扩散系数的研究.  , doi: 10.7498/aps.50.715
    [13] 刘慕仁, 陈若航, 李华兵, 孔令江. 二维对流扩散方程的格子Boltzmann方法.  , doi: 10.7498/aps.48.1800
    [14] 赵建华, 刘日平, 周镇华, 张湘义, 张 明, 许应凡, 王文魁. 一种测量液态金属扩散系数的新方法——固/液-液/固复合三层膜法.  , doi: 10.7498/aps.48.416
    [15] 赵越超, 冼鼎昌, 吴自勤. 两元合金组成的扩散偶的相形成过程.  , doi: 10.7498/aps.42.78
    [16] 杨传铮;钟福民. 二元扩散偶界面的元素扩散和金属间相的形成.  , doi: 10.7498/aps.38.1354
    [17] 夏蒙棼. 随机磁场中的反常扩散效应.  , doi: 10.7498/aps.30.1275
    [18] 谢党. 测定半导体扩散层表面浓度、p-n结深度及扩散系数的霍耳效应法.  , doi: 10.7498/aps.22.877
    [19] 卓济苍, 续競存. 合金扩散参量二极管的优值.  , doi: 10.7498/aps.20.311
    [20] 肖振喜, 张应. 低压含氢扩散云室.  , doi: 10.7498/aps.16.113
计量
  • 文章访问数:  214
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-09
  • 修回日期:  2025-09-05
  • 上网日期:  2025-09-24

/

返回文章
返回
Baidu
map