- 
				本工作设计了一种具有长方形边界的介质阻挡放电装置, 首次观察到了一种包含被隔列拉伸蜂窝框架的蜂窝超点阵斑图, 并对其形成机制进行了实验和理论研究. 随着外加电压的增大, 斑图从具有D6h对称性的蜂窝超点阵斑图演化到D2h对称性的类蜂窝超点阵斑图. 实验上采用高速照相机和光电倍增管测量了上述两种斑图的时空结构, 发现蜂窝超点阵斑图中的六边形子点阵变成为大、小条纹两个子点阵, 同时蜂窝框架子点阵被隔列拉伸, 而且除上升沿放电外还存在下降沿放电. 理论上使用COMSOL Multiphysics软件数值求解泊松方程, 模拟了外加电压上升沿中的隔列拉伸蜂窝框架放电前后的电场, 其结果很好地解释了实验现象, 给出了隔列拉伸的蜂窝框架的形成机制.Patterns formed in dielectric barrier discharge is a typical nonlinear self-organization phenomenon. Research on the patterns helps elucidate the formation and evolution mechanisms of spatiotemporal structures in non-equilibrium systems, while also holding potential application value in fields such as material processing and plasma chemical engineering. A honeycomb superlattice pattern with an alternately-stretched honeycomb frame is observed in dielectric barrier discharge with a rectangular modulated gas gap for the first time and is studied both experimentally and theoretically. As the applied voltage increases, the pattern evolves from a hexagonal superlattice pattern with D6h symmetry to a quasi honeycomb superlattice pattern with D2h symmetry. Experimentally, the spatiotemporal structures of these two patterns are measured using an intensified charge coupled device (ICCD) and two photomultiplier tubes (PMTs). It is found that the hexagonal sublattice in the honeycomb superlattice pattern is divided into two sublattices, including a large stripe sublattice and a small stripe lattice. Additionally, the honeycomb frame sublattice is alternately-stretched. Discharges occur during both the rising and falling edges of the applied voltage. Through the estimation of the wall charge quantities of the two types of honeycomb frames and the analysis of the influence of boundaries on pattern formation, it is found that the quasi honeycomb superlattice pattern emerges as a self-organized structure under the influence of gas gap symmetry. Theoretically, the Poisson equation is numerically solved using COMSOL Multiphysics to simulate the electric field of the alternately-stretched honeycomb frame before and after discharge during the rising phase of the applied voltage. The result well explains the experimental phenomenon and provides the formation mechanism of the alternately-stretched honeycomb frame.
- 
													Keywords:
													
 - dielectric barrier discharge /
 - pattern /
 - spatiotemporal dynamics
 
 - 
				
    
    
    
图 2 随着外加电压的增加斑图的演化序列 (a) 随机放电丝, U = 4.0 kV; (b) 蜂窝超点阵斑图, U = 4.9 kV; (c) 蜂窝框架加厚的蜂窝超点阵斑图, U = 5.3 kV; (d) 类蜂窝超点阵斑图, U = 5.6 kV; (e) 不稳定的蜂窝超点阵斑图, U = 5.8 kV; (f) 模糊条纹状, U = 6.4 kV; (g) 不同蜂窝斑图中蜂窝框架子点阵的示意图; (h) 斑图(a)—(f)的电压U与氩气含量φ的相图; (i) 类蜂窝超点阵斑图的气压p与氩气含量φ的相图
Fig. 2. Transition of the pattern with the applied voltage increasing: (a) Random discharge filament, U = 4.0 kV; (b) honeycomb superlattice pattern, U = 4.9 kV; (c) honeycomb superlattice pattern with thicker honeycomb frame, U = 5.3 kV; (d) quasi honeycomb superlattice pattern, U = 5.6 kV; (e) unstable honeycomb superlattice pattern, U = 5.8 kV; (f) vague stripe, U = 6.4 kV; (g) schematic diagram of the sublattice of the honeycomb frame in different honeycomb patterns; (h) the phase diagram of the patterns in evolution sequence as a function of the voltage U and argon concentration φ shown in panel (a)—(f); (i) the phase diagram of quasi honeycomb superlattice pattern as a function of the gas pressure p and argon concentration φ.
图 3 类蜂窝超点阵斑图的瞬时照片 (a) 斑图的电压电流波形图(Δt1 = 1440 ns, Δt2 = 640 ns); (b), (c) 分别对应曝光时间为Δt1和Δt2的染色叠加100个电压周期的瞬时照片; (d) 图(b)和图(c)的叠加图
Fig. 3. Instantaneous images of the quasi honeycomb superlattice pattern: (a) Waveforms of the voltage and the current. (Δt1 = 1440 ns, Δt2 = 640 ns); (b), (c) images exposed corresponding to the current pulse phases denoted by Δt1 and Δt2 in panel (a), respectively, and the images are integrated for 100 voltage cycles; (d) superposition of panels (b), (c).
图 4 类蜂窝超点阵斑图中不同子结构的时空相关性测量 (a) 类蜂窝超点阵斑图; (b), (c) F和S、B和S的时间相关性测量; (d) 斑图时空结构示意图
Fig. 4. Spatiotemporal correlation measurement of different substructures in a quasi honeycomb superlattice pattern: (a) Quasi honeycomb superlattice pattern; (b), (c) measurement of the temporal correlation between F and S, B and S; (d) schematic diagram of the spatial and temporal structure of the pattern.
图 5 蜂窝超点阵斑图的瞬时照片 (a) 斑图的电压电流波形图(Δt1 = 560 ns, Δt2 = 2000 ns); (b), (c) 分别对应曝光时间为Δt1和Δt2的染色叠加100个电压周期的瞬时照片; (d) 图(b)和(c)的叠加图
Fig. 5. Instantaneous images of the honeycomb superlattice pattern: (a) Waveforms of the voltage and the current. (Δt1 = 560 ns, Δt2 = 2000 ns); (b), (c) images exposed corresponding to the current pulse phases denoted by ∆t1 and ∆t2 in (a), respectively, and the images are integrated for 100 voltage cycles; (d) superposition of panels (b), (c).
图 6 两种蜂窝超点阵斑图的电压电流波形图 (a1) 蜂窝超点阵斑图及其电压电流波形图(b1); (a2) 类蜂窝超点阵斑图及其电压电流波形图(b2)
Fig. 6. Waveform diagram of voltage and current of two kinds of honeycomb superlattice patterns: (a1) Honeycomb superlattice pattern and its voltage and current waveforms diagram (b1); (a2) quasi honeycomb superlattice pattern and its voltage and current waveforms diagram (b2).
 - 
				
[1] Bánsági T, Vanag V K, Epstein I R 2011 Science 331 1309
Google Scholar
						[2] Kameke A V, Huhn F, Muñuzuri A P, Pérez-Muñuzuri 2013 Phys. Rev. Lett. 110 088302
Google Scholar
						[3] Rogers J L, Schatz M F, Brausch, Pesch W 2000 Phys. Rev. Lett. 85 4281
Google Scholar
						[4] Perkins A C, Grigoriev R O, Schatz M F 2011 Phys. Rev. Lett. 107 064501
Google Scholar
						[5] Cominotti R, Berti A, Farolfi A, Zenesini A, Lamporesi G, Carusotto I, Ferrari G. 2022 Phys. Rev. Lett. 128 210410
[6] Frumkin V, Gokhale S 2023 Phys. Rev. E 108 012601
Google Scholar
						[7] Bernecker B, Callegari T, Boeuf J P 2011 J. Phys. D: Appl. Phys. 44 262002
Google Scholar
						[8] Shi H, Wang Y H, Wang D Z 2008 Phys. Plasmas 15 122306
Google Scholar
						[9] McKay K, Donaghy D, He F, Bradley J W 2017 Plasma Sources Sci. Technol. 27 015002
Google Scholar
						[10] Fan W L, Deng T K, Liu S, Liu R Q, He Y F, Liu Y H, Liu Y N, Liu F C 2025 Phys. Rev. E 111 024210
Google Scholar
						[11] Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
Google Scholar
						[12] Callegari T, Bernecker B, Boeuf J P 2014 Plasma Sources Sci. Technol. 23 054003
Google Scholar
						[13] Boeuf J P 2003 J. Phys. D: Appl. Phys. 36 R53
[14] Polonskyi O, Hartig T, Uzarski J R, Gordon M J 2021 Appl. Phys. Lett. 119 211601
Google Scholar
						[15] Peng B F, Li J, Jiang N, Jiang Y, Chen Z Q, Lei Z P, Song J C 2024 Phys. Fluids 36 037144
Google Scholar
						[16] Brauer I, Bode M, Ammelt E, Purwins H G 2000 Phys. Rev. Lett. 84 4104
Google Scholar
						[17] Breazeal W, Flynn K M, Gwinn E G 1995 Phys. Rev. E 52 1503
Google Scholar
						[18] Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 3817
Google Scholar
						[19] Bernecker B, Callegari T, Blanco S, Fournier R, Boeuf J P 2009 Eur. Phys. J. Appl. Phys. 47 22808
Google Scholar
						[20] Nie Q Y, Ren C S, Wang D Z, Li S Z, Zhang J L, Kong M G 2007 Appl. Phys. Lett. 90 221504
Google Scholar
						[21] Dong L F, Mao Z G, Ran J X 2005 Chin. Phys. 14 1618
Google Scholar
						[22] Dong L F, Li Y H, Qi X X, Fan W L, Li R, Liu S, Pan Y Y 2025 Opt. Express 33 37246
Google Scholar
						[23] Dong L F, Zhang L J, He Y N, Wei T, Li Y H, Li C, Pan Y Y 2024 Appl. Phys. Lett. 125 104101
Google Scholar
						[24] Liu F C, Liu Y N, Liu Q, Wu Z C, Liu Y H, Gao K Y, He Y F, Fan W L, Dong L F 2022 Plasma Sources Sci. Technol. 31 025015
Google Scholar
						[25] Fan W L, Wang Q H, Li R, Deng T K, Wang S, Li Y H, He Y F, Chu L Z, Liu F C 2024 Appl. Phys. Lett. 124 121703
Google Scholar
						[26] Duan X X, Ouyang J T, Zhao X F, He F, 2009 Phys. Rev. E 80 016202
Google Scholar
						[27] Feng J Y, Dong L F, Wei L Y, Fan W L, Li C X, Pan Y Y 2016 Phys. Plasmas 23 093502
Google Scholar
						[28] 卫婷, 董丽芳, 张立佳, 贺玉楠, 李耀华, 李骋, 潘宇扬 2024 中国科学: 物理学 力学 天文学 54 105211
Google Scholar
						Wei T, Dong L F, Zhang L J, He Y N, Li Y H, Li C, Pan Y Y 2024 Sci. Sin. Phys. Mech. Astron. 54 105211
Google Scholar
						[29] Dong L F, Fan W L, He Y F, Liu F C, Li S, Gao R L, Wang L 2006 Phys. Rev. E 73 066206
Google Scholar
						[30] Dong L F, Liu W L, Wang H F, He Y F, Fan W L, Gao R L 2007 Phys. Rev. E 76 046210
Google Scholar
						[31] Bernecker B, Callegari T, Blanco S, Fournier R, Boeuf J P 2009 Eur. Phys. J. Appl. Phys. 47 22808
Google Scholar
						[32] Zhu P, Dong L F, Yang J, Gao Y N, Wang Y J, Li B 2015 Phys. Plasmas 22 023507
Google Scholar
						[33] 于广林, 董丽芳, 窦亚亚, 孙浩洋, 米彦霖 2018 发光学报 39 1527
Google Scholar
						Yu G L, Dong L F, Dou Y Y, Gao Y, Sun H Y, Mi Y L 2018 Chin. J. Lumin. 39 1527
Google Scholar
						[34] Li Y H, Wang Y, Pan Y Y, Tian M, Zhang J H, Dong L F 2024 Phys. Plasmas 31 033502
Google Scholar
						 
计量
- 文章访问数: 312
 - PDF下载量: 4
 - 被引次数: 0
 


					
		        
	        
 
										





							
							
下载: