搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介质阻挡放电中类蜂窝超点阵斑图研究

李耀华 燕兆赫 闫志浩 李骋 潘宇扬 董丽芳

引用本文:
Citation:

介质阻挡放电中类蜂窝超点阵斑图研究

李耀华, 燕兆赫, 闫志浩, 李骋, 潘宇扬, 董丽芳

Honeycomb-like superlattice pattern in dielectric barrier discharge

LI Yaohua, YAN Zhaohe, YAN Zhihao, LI Cheng, PAN Yuyang, DONG Lifang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本工作设计了一种具有长方形边界的介质阻挡放电装置, 首次观察到了一种包含被隔列拉伸蜂窝框架的蜂窝超点阵斑图, 并对其形成机制进行了实验和理论研究. 随着外加电压的增大, 斑图从具有D6h对称性的蜂窝超点阵斑图演化到D2h对称性的类蜂窝超点阵斑图. 实验上采用高速照相机和光电倍增管测量了上述两种斑图的时空结构, 发现蜂窝超点阵斑图中的六边形子点阵变成为大、小条纹两个子点阵, 同时蜂窝框架子点阵被隔列拉伸, 而且除上升沿放电外还存在下降沿放电. 理论上使用COMSOL Multiphysics软件数值求解泊松方程, 模拟了外加电压上升沿中的隔列拉伸蜂窝框架放电前后的电场, 其结果很好地解释了实验现象, 给出了隔列拉伸的蜂窝框架的形成机制.
    Patterns formed in dielectric barrier discharge is a typical nonlinear self-organization phenomenon. Research on the patterns helps elucidate the formation and evolution mechanisms of spatiotemporal structures in non-equilibrium systems, while also holding potential application value in fields such as material processing and plasma chemical engineering. A honeycomb superlattice pattern with an alternately-stretched honeycomb frame is observed in dielectric barrier discharge with a rectangular modulated gas gap for the first time and is studied both experimentally and theoretically. As the applied voltage increases, the pattern evolves from a hexagonal superlattice pattern with D6h symmetry to a quasi honeycomb superlattice pattern with D2h symmetry. Experimentally, the spatiotemporal structures of these two patterns are measured using an intensified charge coupled device (ICCD) and two photomultiplier tubes (PMTs). It is found that the hexagonal sublattice in the honeycomb superlattice pattern is divided into two sublattices, including a large stripe sublattice and a small stripe lattice. Additionally, the honeycomb frame sublattice is alternately-stretched. Discharges occur during both the rising and falling edges of the applied voltage. Through the estimation of the wall charge quantities of the two types of honeycomb frames and the analysis of the influence of boundaries on pattern formation, it is found that the quasi honeycomb superlattice pattern emerges as a self-organized structure under the influence of gas gap symmetry. Theoretically, the Poisson equation is numerically solved using COMSOL Multiphysics to simulate the electric field of the alternately-stretched honeycomb frame before and after discharge during the rising phase of the applied voltage. The result well explains the experimental phenomenon and provides the formation mechanism of the alternately-stretched honeycomb frame.
  • 图 1  实验装置图

    Fig. 1.  Schematic diagram of the experimental setup.

    图 2  随着外加电压的增加斑图的演化序列 (a) 随机放电丝, U = 4.0 kV; (b) 蜂窝超点阵斑图, U = 4.9 kV; (c) 蜂窝框架加厚的蜂窝超点阵斑图, U = 5.3 kV; (d) 类蜂窝超点阵斑图, U = 5.6 kV; (e) 不稳定的蜂窝超点阵斑图, U = 5.8 kV; (f) 模糊条纹状, U = 6.4 kV; (g) 不同蜂窝斑图中蜂窝框架子点阵的示意图; (h) 斑图(a)—(f)的电压U与氩气含量φ的相图; (i) 类蜂窝超点阵斑图的气压p与氩气含量φ的相图

    Fig. 2.  Transition of the pattern with the applied voltage increasing: (a) Random discharge filament, U = 4.0 kV; (b) honeycomb superlattice pattern, U = 4.9 kV; (c) honeycomb superlattice pattern with thicker honeycomb frame, U = 5.3 kV; (d) quasi honeycomb superlattice pattern, U = 5.6 kV; (e) unstable honeycomb superlattice pattern, U = 5.8 kV; (f) vague stripe, U = 6.4 kV; (g) schematic diagram of the sublattice of the honeycomb frame in different honeycomb patterns; (h) the phase diagram of the patterns in evolution sequence as a function of the voltage U and argon concentration φ shown in panel (a)—(f); (i) the phase diagram of quasi honeycomb superlattice pattern as a function of the gas pressure p and argon concentration φ.

    图 3  类蜂窝超点阵斑图的瞬时照片 (a) 斑图的电压电流波形图(Δt1 = 1440 ns, Δt2 = 640 ns); (b), (c) 分别对应曝光时间为Δt1和Δt2的染色叠加100个电压周期的瞬时照片; (d) 图(b)和图(c)的叠加图

    Fig. 3.  Instantaneous images of the quasi honeycomb superlattice pattern: (a) Waveforms of the voltage and the current. (Δt1 = 1440 ns, Δt2 = 640 ns); (b), (c) images exposed corresponding to the current pulse phases denoted by Δt1 and Δt2 in panel (a), respectively, and the images are integrated for 100 voltage cycles; (d) superposition of panels (b), (c).

    图 4  类蜂窝超点阵斑图中不同子结构的时空相关性测量 (a) 类蜂窝超点阵斑图; (b), (c) F和S、B和S的时间相关性测量; (d) 斑图时空结构示意图

    Fig. 4.  Spatiotemporal correlation measurement of different substructures in a quasi honeycomb superlattice pattern: (a) Quasi honeycomb superlattice pattern; (b), (c) measurement of the temporal correlation between F and S, B and S; (d) schematic diagram of the spatial and temporal structure of the pattern.

    图 5  蜂窝超点阵斑图的瞬时照片 (a) 斑图的电压电流波形图(Δt1 = 560 ns, Δt2 = 2000 ns); (b), (c) 分别对应曝光时间为Δt1和Δt2的染色叠加100个电压周期的瞬时照片; (d) 图(b)和(c)的叠加图

    Fig. 5.  Instantaneous images of the honeycomb superlattice pattern: (a) Waveforms of the voltage and the current. (Δt1 = 560 ns, Δt2 = 2000 ns); (b), (c) images exposed corresponding to the current pulse phases denoted by ∆t1 and ∆t2 in (a), respectively, and the images are integrated for 100 voltage cycles; (d) superposition of panels (b), (c).

    图 6  两种蜂窝超点阵斑图的电压电流波形图 (a1) 蜂窝超点阵斑图及其电压电流波形图(b1); (a2) 类蜂窝超点阵斑图及其电压电流波形图(b2)

    Fig. 6.  Waveform diagram of voltage and current of two kinds of honeycomb superlattice patterns: (a1) Honeycomb superlattice pattern and its voltage and current waveforms diagram (b1); (a2) quasi honeycomb superlattice pattern and its voltage and current waveforms diagram (b2).

    图 7  隔列拉伸的蜂窝框架放电前后的电场分布 (a) 放电前; (b) 放电后

    Fig. 7.  Electric field distribution of the alternately-stretched honeycomb frame before and after discharge: (a) Before discharging; (b) after discharging.

    Baidu
  • [1]

    Bánsági T, Vanag V K, Epstein I R 2011 Science 331 1309Google Scholar

    [2]

    Kameke A V, Huhn F, Muñuzuri A P, Pérez-Muñuzuri 2013 Phys. Rev. Lett. 110 088302Google Scholar

    [3]

    Rogers J L, Schatz M F, Brausch, Pesch W 2000 Phys. Rev. Lett. 85 4281Google Scholar

    [4]

    Perkins A C, Grigoriev R O, Schatz M F 2011 Phys. Rev. Lett. 107 064501Google Scholar

    [5]

    Cominotti R, Berti A, Farolfi A, Zenesini A, Lamporesi G, Carusotto I, Ferrari G. 2022 Phys. Rev. Lett. 128 210410

    [6]

    Frumkin V, Gokhale S 2023 Phys. Rev. E 108 012601Google Scholar

    [7]

    Bernecker B, Callegari T, Boeuf J P 2011 J. Phys. D: Appl. Phys. 44 262002Google Scholar

    [8]

    Shi H, Wang Y H, Wang D Z 2008 Phys. Plasmas 15 122306Google Scholar

    [9]

    McKay K, Donaghy D, He F, Bradley J W 2017 Plasma Sources Sci. Technol. 27 015002Google Scholar

    [10]

    Fan W L, Deng T K, Liu S, Liu R Q, He Y F, Liu Y H, Liu Y N, Liu F C 2025 Phys. Rev. E 111 024210Google Scholar

    [11]

    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1Google Scholar

    [12]

    Callegari T, Bernecker B, Boeuf J P 2014 Plasma Sources Sci. Technol. 23 054003Google Scholar

    [13]

    Boeuf J P 2003 J. Phys. D: Appl. Phys. 36 R53

    [14]

    Polonskyi O, Hartig T, Uzarski J R, Gordon M J 2021 Appl. Phys. Lett. 119 211601Google Scholar

    [15]

    Peng B F, Li J, Jiang N, Jiang Y, Chen Z Q, Lei Z P, Song J C 2024 Phys. Fluids 36 037144Google Scholar

    [16]

    Brauer I, Bode M, Ammelt E, Purwins H G 2000 Phys. Rev. Lett. 84 4104Google Scholar

    [17]

    Breazeal W, Flynn K M, Gwinn E G 1995 Phys. Rev. E 52 1503Google Scholar

    [18]

    Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 3817Google Scholar

    [19]

    Bernecker B, Callegari T, Blanco S, Fournier R, Boeuf J P 2009 Eur. Phys. J. Appl. Phys. 47 22808Google Scholar

    [20]

    Nie Q Y, Ren C S, Wang D Z, Li S Z, Zhang J L, Kong M G 2007 Appl. Phys. Lett. 90 221504Google Scholar

    [21]

    Dong L F, Mao Z G, Ran J X 2005 Chin. Phys. 14 1618Google Scholar

    [22]

    Dong L F, Li Y H, Qi X X, Fan W L, Li R, Liu S, Pan Y Y 2025 Opt. Express 33 37246Google Scholar

    [23]

    Dong L F, Zhang L J, He Y N, Wei T, Li Y H, Li C, Pan Y Y 2024 Appl. Phys. Lett. 125 104101Google Scholar

    [24]

    Liu F C, Liu Y N, Liu Q, Wu Z C, Liu Y H, Gao K Y, He Y F, Fan W L, Dong L F 2022 Plasma Sources Sci. Technol. 31 025015Google Scholar

    [25]

    Fan W L, Wang Q H, Li R, Deng T K, Wang S, Li Y H, He Y F, Chu L Z, Liu F C 2024 Appl. Phys. Lett. 124 121703Google Scholar

    [26]

    Duan X X, Ouyang J T, Zhao X F, He F, 2009 Phys. Rev. E 80 016202Google Scholar

    [27]

    Feng J Y, Dong L F, Wei L Y, Fan W L, Li C X, Pan Y Y 2016 Phys. Plasmas 23 093502Google Scholar

    [28]

    卫婷, 董丽芳, 张立佳, 贺玉楠, 李耀华, 李骋, 潘宇扬 2024 中国科学: 物理学 力学 天文学 54 105211Google Scholar

    Wei T, Dong L F, Zhang L J, He Y N, Li Y H, Li C, Pan Y Y 2024 Sci. Sin. Phys. Mech. Astron. 54 105211Google Scholar

    [29]

    Dong L F, Fan W L, He Y F, Liu F C, Li S, Gao R L, Wang L 2006 Phys. Rev. E 73 066206Google Scholar

    [30]

    Dong L F, Liu W L, Wang H F, He Y F, Fan W L, Gao R L 2007 Phys. Rev. E 76 046210Google Scholar

    [31]

    Bernecker B, Callegari T, Blanco S, Fournier R, Boeuf J P 2009 Eur. Phys. J. Appl. Phys. 47 22808Google Scholar

    [32]

    Zhu P, Dong L F, Yang J, Gao Y N, Wang Y J, Li B 2015 Phys. Plasmas 22 023507Google Scholar

    [33]

    于广林, 董丽芳, 窦亚亚, 孙浩洋, 米彦霖 2018 发光学报 39 1527Google Scholar

    Yu G L, Dong L F, Dou Y Y, Gao Y, Sun H Y, Mi Y L 2018 Chin. J. Lumin. 39 1527Google Scholar

    [34]

    Li Y H, Wang Y, Pan Y Y, Tian M, Zhang J H, Dong L F 2024 Phys. Plasmas 31 033502Google Scholar

  • [1] 冉俊霞, 张寒, 陈沁怡, 周奕汛, 苏彤, 李庆, 李雪辰. 环-点阵-同心环斑图的放电演化机理及光谱诊断研究.  , doi: 10.7498/aps.74.20250737
    [2] 田爽, 张寒, 张喜, 张雪雪, 李雪辰, 李庆, 冉俊霞. 双气隙下介质阻挡放电斑图的放电特性与参数诊断.  , doi: 10.7498/aps.74.20250111
    [3] 李骋, 闫志浩, 齐晓秀, 李雨昕, 潘宇扬, 董丽芳. 条纹水电极介质阻挡放电中D2h超点阵斑图研究.  , doi: 10.7498/aps.74.20250985
    [4] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学.  , doi: 10.7498/aps.69.20191424
    [5] 刘伟波, 董丽芳. 介质阻挡放电中同心圆环斑图的产生机理.  , doi: 10.7498/aps.64.245202
    [6] 王荣, 吴莹, 刘少宝. 随机中毒对神经元网络时空动力学行为的影响.  , doi: 10.7498/aps.62.220504
    [7] 李雪辰, 刘润甫, 贾鹏英, 孔柳青. 流动氩气放电系统中条纹斑图形成的实验研究.  , doi: 10.7498/aps.61.115205
    [8] 陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞. 大气压介质阻挡放电超四边形斑图的等离子体参量.  , doi: 10.7498/aps.61.075211
    [9] 贺亚峰, 冯晓敏, 张亮. 气体放电系统中时空斑图的时滞反馈控制.  , doi: 10.7498/aps.61.245204
    [10] 董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红. 介质阻挡放电跃变升压模式下靶波斑图研究.  , doi: 10.7498/aps.60.065206
    [11] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红. 氩气/空气介质阻挡放电自组织超六边形斑图实验研究.  , doi: 10.7498/aps.58.4806
    [12] 董丽芳, 赵海涛, 谢伟霞, 王红芳, 刘微粒, 范伟丽, 肖 红. 介质阻挡放电系统中超四边形斑图形成的实验研究.  , doi: 10.7498/aps.57.5768
    [13] 范伟丽, 董丽芳, 李雪辰, 尹增谦, 贺亚峰, 刘书华. Air/Ar介质阻挡放电中正方形斑图的特性研究.  , doi: 10.7498/aps.56.1467
    [14] 董丽芳, 刘书华, 王红芳, 范伟丽, 高瑞玲, 郝雅娟. 介质阻挡放电中两种不同时空对称性的六边形发光斑图.  , doi: 10.7498/aps.56.3332
    [15] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究.  , doi: 10.7498/aps.56.1471
    [16] 董丽芳, 李树锋, 刘 峰, 刘富成, 刘书华, 范伟丽. 大气压氩气介质阻挡放电中的四边形斑图和六边形斑图.  , doi: 10.7498/aps.55.362
    [17] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究.  , doi: 10.7498/aps.54.3268
    [18] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟.  , doi: 10.7498/aps.54.4808
    [19] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程.  , doi: 10.7498/aps.52.929
    [20] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构.  , doi: 10.7498/aps.51.2296
计量
  • 文章访问数:  310
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-18
  • 修回日期:  2025-09-18
  • 上网日期:  2025-09-26

/

返回文章
返回
Baidu
map