搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

9.1 dB $ {\rm H{G_{10}}} $模压缩态光场的实验制备

李治 白建东 刘奎 唐军

引用本文:
Citation:

9.1 dB $ {\rm H{G_{10}}} $模压缩态光场的实验制备

李治, 白建东, 刘奎, 唐军

Generation of 9.1 dB $ { \rm H{G_{10}}} $ mode squeezed light

LI Zhi, BAI Jiandong, LIU Kui, TANG Jun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 高阶厄米高斯(HG)模压缩态光场作为一种量子光源, 在量子精密测量, 量子成像等领域有重要的应用价值. HG模式量子态增强空间测量精度很大程度上取决于其压缩度. 然而, 利用光学参量振荡器产生高阶HG模压缩光的压缩度主要受泵浦功率限制. 本文理论分析并实验验证利用楔角非线性晶体构成的双共振光学参量振荡器, 在低泵浦功率条件下实现$ {\rm H{G_{10}}} $模压缩态光场的实验制备. 这里, 通过调节光场经历楔角非线性晶体的长度和工作温度, 从而补偿$ {\rm H{G_{20}}} $ 与 $ {\rm H{G_{10}}} $ 模式在腔内的 Gouy 相位差和非线性晶体中不同频率光场引起的像散, 同时实现双共振条件和相位匹配要求. 实验结果表明仅需51mW的 $ {\rm H{G_{20}}} $ 模式泵浦光操控光学参量振荡器产生 9.1 dB 的 $ {\rm H{G_{10}}} $ 模压缩态光场. 该量子技术解决了光学参量振荡器产生高阶横模量子态受泵浦功率限制的问题, 可用于制备高压缩度的高阶HG模压缩态光场, 为提高空间测量精度提供有效手段.
    The high-order Hermite-Gaussian (HG) mode squeezed light, as one of the important quantum sources, has significant application in quantum precision measurement and quantum imaging. The enhancement of spatial measurement precision largely depends on the squeezing level of high-order HG-mode quantum states. However, the squeezing level of high-order HG modes is primarily limited by the external pump power in the optical parametric oscillator (OPO) cavity. It is well known that the OPO with double resonance for both squeezed light and pump light enables to lower external pump power. The generation of $ {\rm HG_{10}} $ mode squeezed light differs from that of $ {\rm HG_{00}} $ mode squeezed light, with an additional Gouy phase shift introduced between the $ {\rm HG_{20}} $ pump mode and $ {\rm HG_{10}} $ down-conversion mode within the OPO cavity. In this paper, we present a theoretical analysis and the experimental generation of $ {\rm HG_{10}} $ mode squeezed light at lower external pump power using a doubly-resonant OPO based on a wedged periodically poled $ \rm KTiOP{O_4} $ (PPKTP) crystal. By precisely controlling both the propagation length of the optical field and temperature in the wedged PPKTP crystal, we simultaneously compensate for the Gouy phase shift between the $ {\rm HG_{20}} $ and $ {\rm HG_{10}} $ modes as well as the astigmatism induced by the frequency-dependent refractive index. This configuration allows double resonance for both the $ {\rm HG_{20}} $ pump mode and the $ {\rm HG_{10}} $ squeezed mode while operating close to optimum phase matching conditions. Increasing the reflectivity of the input coupler of OPO cavity enhances the intra-cavity circulating power of the pump light, thereby reducing the required external pump power. Here, the bow-tie-shaped OPO cavity consists of two plane mirrors and two concave mirrors with a radius of curvature of 50 mm. The wedged PPKTP is placed in the smallest beam waist of the cavity. The mode converter is employed to generate high-purity $ {\rm HG_{20}} $ pump mode with a measured purity of 98.0$ {\text{%}} $. The mode-matching efficiency of 93.0$ {\text{%}} $ is achieved between the high-purity $ {\rm HG_{20}} $ pump mode and the OPO cavity. The homodyne visibility of the $ {\rm HG_{10}} $ mode is 98.1$ {\text{%}} $. We experimentally demonstrate the generation of 9.10 dB $ {\rm HG_{10}} $ mode squeezed light using a doubly-resonant OPO with only 51 mW of $ {\rm HG_{20}} $ pump mode, and simultaneously achieve 9.20 dB of squeezing in the $ {\rm HG_{00}} $ mode with 27 mW of $ {\rm HG_{00}} $ pump mode. The inferred squeezing level of both $ {\rm HG_{10}} $ and $ {\rm HG_{00}} $ mode squeezed light reaches up to 12.15 dB. The quantum technology has solved the pump power limitations in optical parametric oscillators, enabling the generation of high-order HG mode states with high squeezing level and providing an effective method to enhance spatial measurement precision.
  • 图 1  双共振OPO结构示意图

    Fig. 1.  Schematic diagram of doubly-resonant OPO structure.

    图 2  实验装置图 (QWP, 四分之一波片; HWP, 半波片; PBS, 偏振分光棱镜; SG, 信号发生器; LPF, 低通滤波器; PZT, 压电陶瓷; DBS, 双色镜; BS, 50/50分束镜; SHG, 倍频腔; MC, 模式转换腔; OPO, 光学参量振荡器; SA, 频谱分析仪; BHD, 平衡零拍探测系统)

    Fig. 2.  The experimental setup for the production of both $ {\rm H{G_{00}}} $ and $ {\rm H{G_{10}}} $ mode squeezed light. QWP, quarter-wave plate; HWP, half-wave plate; PBS, polarizing beam splitter; SG, signal generator; LPF, low-pass filter; PZT, piezo-electric transducer; DBS, dichroic beam splitter; BS, beam splitter; SHG, second harmonic generation; MC, mode converter; OPO, optical parametric oscillator; SA, spectrum analyzer; BHD, balance homodyne detection.

    图 3  (a) $ {\rm H{G_{20}}} $模式强度分布; (b) $ {\rm H{G_{20}}} $模式的纯度拟合结果; (c) $ {\rm H{G_{20}}} $模式的透射光强随OPO腔长的变化结果, 0和1(FSR)对应于$ {\rm H{G_{20}}} $模式的透射峰

    Fig. 3.  (a) The intensity profile of $ {\rm H{G_{20}}} $ mode; (b) The purity fitting result of $ {\rm H{G_{10}}} $ mode; (c) The transmitted light intensity of $ {\rm H{G_{20}}} $ mode varies with the OPO cavity length. The transmission peaks of 0 and 1 free spectral range (FSR) correspond to the $ {\rm H{G_{20}}} $ mode.

    图 4  $ {\rm H{G_{00}}} $模式和$ {\rm H{G_{10}}} $模式压缩态光场的噪声功率谱 (a) $ {\rm H{G_{00}}} $模式的最大压缩度及其对应的反压缩度; (b) $ {\rm H{G_{10}}} $模式的最大压缩度及其对应的反压缩度; 曲线i为散粒噪声基准(SNL); 曲线ii为压缩态光场的量子噪声水平随本地光相位扫描的变化结果; 曲线iii为电子学噪声; 频谱分析仪的分辨率带宽(RBW)为300 kHz, 视频带宽(VBW)为2 kHz, 分析频率为3 MHz

    Fig. 4.  The noise power spectra of squeezed states for the $ {\rm HG_{00}} $ and $ {\rm HG_{10}} $ modes: (a) The measured squeezing level of the $ {\rm H{G_{00}}} $ mode, along with the respective anti-squeezing level; (b) The measured squeezing level of the $ {\rm H{G_{10}}} $ mode, along with the respective anti-squeezing level; Curve i represents the shot noise limit(SNL); Curve ii shows the quantum noise level of the squeezed light versus the phase scan of the local oscillator; Curve iii indicates the electronic noise; The spectrum analyzer was set with a resolution bandwidth (RBW) of 300 kHz, video bandwidth (VBW) of 2 kHz, and the analysis frequency of 3 MHz.

    图 5  $ {\rm H{G_{10}}} $模式的压缩和反压缩度随泵浦功率的变化结果, 实验结果归一化到真空压缩态

    Fig. 5.  The pump power dependence of squeezed and anti-squeezed levels for $ {\rm H{G_{10}}} $ mode. The experimental result is normalized to the vacuum state.

    Baidu
  • [1]

    Heinze J, Danzmann K, Willke B, Vahlbruch H 2022 Phys. Rev. Lett. 129 031101Google Scholar

    [2]

    Acernese F, Agathos M, Aiello L, Ain A, Allocca A, Amato A, Ansoldi S, Antier S, Arène M, et al 2020 Phys. Rev. Lett. 125 131101Google Scholar

    [3]

    Pooser R C, Lawrie B 2015 Optica 2 393Google Scholar

    [4]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002Google Scholar

    [5]

    孙恒信, 刘奎, 张俊香, 郜江瑞 2015 64 234210Google Scholar

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210Google Scholar

    [6]

    Defienne H, Bowen W P, Chekhova M, Lemos G B, Oron D, Ramelow S, Treps N, Faccio D 2024 Nat. Photonics 18 1024Google Scholar

    [7]

    Roman R V, Fainsin D, Zanin G L, Treps N, Diamanti E, Parigi V 2024 Phys. Rev. Research 6 043113Google Scholar

    [8]

    Shi S P, Tian L, Wang Y J, Zheng Y H, Xie C D, Peng K H 2020 Phy. Rev. Lett. 125 070502Google Scholar

    [9]

    Liu X, Shi S P, Wu Y M, Wang X, Tian L, Li W, Wang Y J, Zheng Y H 2025 Sci. China-Phys. Mech. Astron. 68 124211Google Scholar

    [10]

    Shi S P, Wang Y J, Tian L, Li W, Wu Y M, Wang Q W, Zheng Y H, Peng K H 2023 Laser Photonics Rev. 17 2200508Google Scholar

    [11]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763Google Scholar

    [12]

    王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉 2020 69 234204Google Scholar

    Wang J P, Zhang W H, Li R X, Tian L, Wang Y J, Zheng Y H 2020 Acta Phys. Sin. 69 234204Google Scholar

    [13]

    Wu L A, Kimble H J, Hall J H, Wu H F 1986 Phys. Rev. Lett. 57 2520Google Scholar

    [14]

    Gao L, Zheng L A, Lu B, Shi S P, Tian L, Zheng Y H 2024 Light Sci. Appl. 13 294Google Scholar

    [15]

    Serikawa T, Yoshikawa J I, Makino K, Frusawa A 2016 Opt. Express 24 28383Google Scholar

    [16]

    Wu Y M, Shi S P, Liu X, Tian L, Li W, Wang Y J, Zheng Y H 2025 Phys. Rev. Applied 23 044021Google Scholar

    [17]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [18]

    Li Z, Guo X L, Sun H X, Liu K, Gao J R 2023 Opt. Express 31 3651Google Scholar

    [19]

    Heinze J, Willke B, Vahlbruch H 2022 Phys. Rev. Lett. 128 083606Google Scholar

    [20]

    李娟, 李佳明, 蔡春晓, 孙恒信, 刘奎, 郜江瑞 2019 68 034204Google Scholar

    Li J, Li J M, Cai C X, Sun H X, Liu K, Gao J R 2019 Acta Phys. Sin. 68 034204Google Scholar

    [21]

    Yesharim O, Tshuva G, Arie A 2024 APL Photonics 9 106116Google Scholar

    [22]

    Goodwin-Jones A W, Cabrita R, Korobko M, Beuzekom M V, Brown D D, Fafone V, Heijningen J V, Rocchi A, Schiworski M G, Tacca M 2024 Optica 11 273Google Scholar

    [23]

    Treps N, Grosse N, Bowen W P, Fabre C, Bachor H A, Lam P K 2003 Science 301 940Google Scholar

    [24]

    Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A, Bowen W P 2013 Nat. Photonics 7 229Google Scholar

    [25]

    Steinlechner S, Rohweder N O, Korobko M, Töyrä D, Freise A, Schnabel R 2018 Phys. Rev. Lett. 121 263602Google Scholar

    [26]

    Zhang C X, Chen Y C, Chen G, Sun H X, Zhang J, Liu K, Yang R G, Gao J R 2024 Phys. Rev. Applied 22 054068Google Scholar

    [27]

    Semmler M, Berg-Johansen S, Chille V, Gabriel C, Banzer P, Aiello A, Marquardt C, Leuchs G 2016 Opt. Express 24 7633Google Scholar

    [28]

    Ma L, Guo H, Sun H X, Liu K, Su B D, Gao J R 2020 Photon. Res. 8 1422Google Scholar

    [29]

    Lassen M, Delaubert V, Harb C C, Lam P K, Treps N, Bachor H A 2006 J. Eur. Opt. Soc. Rapid Publ. 1 06003Google Scholar

    [30]

    Guo J, Cai C X, Ma L, Liu K, Sun H X, Gao J R 2017 Opt. Express 25 4985Google Scholar

    [31]

    Stefszky M S, Mow-Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, Mcclelland D E 2012 Class. Quantum Grav. 29 145015Google Scholar

    [32]

    Li Z, Guo H, Liu H B, Li J M, Sun H X, Yang R G, Liu K, Gao J R 2022 Adv. Quantum Technol. 5 2200055Google Scholar

    [33]

    Courtois J, Mohamed A, Romanini D 2013 Phys. Rev. A 88 043844Google Scholar

    [34]

    Liu P, Li J, Li X H, Xiang X, Wang S F, Liu T, Cao M T, Zhang S G, Cai Y, Dong R F 2024 Opt. Express 32 42784

    [35]

    Schönbeck A, Thies F, Schnabel R 2018 Opt. Lett. 43 110Google Scholar

    [36]

    Kozlovsky W J, Nabors C D, Byer R 1988 IEEE J. Quantum Electron. 24 913Google Scholar

    [37]

    Aoki T, Takahashi G, Furusawa A 2006 Opt. Express 14 6930Google Scholar

    [38]

    Zhou Z Y, Liu S L, Li Y, Ding D S, Zhang W, Shi S, Dong M X, Shi B S, Guo G C 2016 Phys. Rev. Lett. 117 103601Google Scholar

    [39]

    Liu S S, Lv Y H, Wang X T, Wang J B, Lou Y B, Jing J T 2024 Phys. Rev. Lett. 132 100801Google Scholar

  • [1] 张若涛, 张文慧. 压缩增强的强度噪声抑制机理.  , doi: 10.7498/aps.74.20241674
    [2] 王渝, 吴艺豪, 李易璞, 卢凯翔, 伊天成, 张云波. 二维旋转谐振子势中单粒子的跳频压缩及演化.  , doi: 10.7498/aps.73.20231929
    [3] 蔚娟, 张岩, 吴银花, 杨文海, 闫智辉, 贾晓军. 双模压缩态量子相干性演化的实验研究.  , doi: 10.7498/aps.72.20221923
    [4] 贺海, 杨鹏飞, 张鹏飞, 李刚, 张天才. 基于1/4波片的腔增强自发参量下转换过程中双折射效应的补偿.  , doi: 10.7498/aps.72.20230422
    [5] 曲良辉, 都琳, 曹子露, 胡海威, 邓子辰. 化学自突触的电导扰动诱导相干或随机双共振现象.  , doi: 10.7498/aps.69.20200856
    [6] 翟泽辉, 郝温静, 刘建丽, 段西亚. 用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量.  , doi: 10.7498/aps.69.20200589
    [7] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计.  , doi: 10.7498/aps.69.20200890
    [8] 谭巍, 邱晓东, 赵刚, 侯佳佳, 贾梦源, 闫晓娟, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 高效频率转换下双波长外腔共振和频技术研究.  , doi: 10.7498/aps.65.074202
    [9] 刘增俊, 翟泽辉, 孙恒信, 郜江瑞. 低频压缩态光场的制备.  , doi: 10.7498/aps.65.060401
    [10] 葛烨, 胡以华, 舒嵘, 洪光烈. 一种新型的用于差分吸收激光雷达中脉冲式光学参量振荡器的种子激光器的频率稳定方法.  , doi: 10.7498/aps.64.020702
    [11] 郭靖, 何广源, 焦中兴, 王彪. 高效率内腔式2 μm简并光学参量振荡器.  , doi: 10.7498/aps.64.084207
    [12] 厉巧巧, 张昕, 吴江滨, 鲁妍, 谭平恒, 冯志红, 李佳, 蔚翠, 刘庆斌. 双层石墨烯位于18002150 cm-1频率范围内的和频拉曼模.  , doi: 10.7498/aps.63.147802
    [13] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器.  , doi: 10.7498/aps.63.054205
    [14] 李巍, 王永钢, 杨伯君. 损耗对表面等离子体激元压缩态的影响.  , doi: 10.7498/aps.60.024203
    [15] 崔前进, 徐一汀, 宗楠, 鲁远甫, 程贤坤, 彭钦军, 薄勇, 崔大复, 许祖彦. 高功率腔内双共振2μm光参量振荡器特性研究.  , doi: 10.7498/aps.58.1715
    [16] 林 敏, 方利民, 朱若谷. 双频信号作用下耦合双稳系统的双共振特性.  , doi: 10.7498/aps.57.2638
    [17] 叶晨光, 张 靖. 利用PPKTP晶体产生真空压缩态及其Wigner准概率分布函数的量子重构.  , doi: 10.7498/aps.57.6962
    [18] 张婉娟, 王治国, 谢双媛, 羊亚平. 频率变化的压缩态光场与原子的相互作用.  , doi: 10.7498/aps.56.2168
    [19] 金 硕, 解炳昊. 外磁场中海森伯反铁磁模型的代数结构和压缩态解.  , doi: 10.7498/aps.55.3880
    [20] 邓文基, 许运华, 刘 平. 测不准关系和最小不确定态.  , doi: 10.7498/aps.52.2961
计量
  • 文章访问数:  294
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-26

/

返回文章
返回
Baidu
map