搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

9.1dB HG10模压缩态光场的实验制备

李治 白建东 刘奎 唐军

引用本文:
Citation:

9.1dB HG10模压缩态光场的实验制备

李治, 白建东, 刘奎, 唐军

Generation of 9.1 dB HG10 mode squeezed light

LI Zhi, BAI Jiandong, LIU Kui, TANG Jun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 高阶厄米高斯(HG)模压缩态光场作为一种量子光源,在量子精密测量,量子成像等领域有重要的应用价值。HG模式量子态增强空间测量精度很大程度上取决于其压缩度。然而,利用光学参量振荡器产生高阶HG模压缩光的压缩度主要受泵浦功率限制。本文理论分析并实验验证利用楔角非线性晶体构成的双共振光学参量振荡器,在低泵浦功率条件下实现HG10模压缩态光场的实验制备。这里,通过调节光场经历楔角非线性晶体的长度和工作温度,从而补偿HG20与HG10模式在腔内的Gouy相位差和非线性晶体中不同频率光场引起的像散,同时实现双共振条件和相位匹配要求。实验结果表明仅需51mW的HG20模式泵浦光操控光学参量振荡器产生9.1 dB的HG10模压缩态光场。该量子技术解决了光学参量振荡器产生高阶横模量子态受泵浦功率限制的问题,可用于制备高压缩度的高阶HG模压缩态光场,为提高空间测量精度提供有效手段。
    The high-order Hermite-Gaussian (HG) mode squeezed light, as one of the important quantum sources, has significant application in quantum precision measurement and quantum imaging. The enhancement of spatial measurement precision largely depends on the squeezing level of high-order HG-mode quantum states. However, the squeezing level of high-order HG modes is primarily limited by the external pump power in the optical parametric oscillator (OPO) cavity. It is well known that the OPO with double resonance for both squeezed light and pump light enables to lower external pump power. The generation of HG10 mode squeezed light differs from that of HG00 mode squeezed light, with an additional Gouy phase shift introduced between the HG20 pump mode and HG10 down-conversion mode within the OPO cavity. In this paper, we present a theoretical analysis and the experimental generation of HG10 mode squeezed light at lower external pump power using a doubly-resonant OPO based on a wedged periodically poled KTiOPO4 (PPKTP) crystal. By precisely controlling both the propagation length of the optical field and temperature in the wedged PPKTP crystal, we simultaneously compensate for the Gouy phase shift between the HG20 and HG10 modes as well as the astigmatism induced by the frequency-dependent refractive index. This configuration allows double resonance for both the HG20 pump mode and the HG10 squeezed mode while operating close to optimum phase matching conditions. Increasing the reflectivity of the input coupler of OPO cavity enhances the intra-cavity circulating power of the pump light, thereby reducing the required external pump power. Here, the bow-tie-shaped OPO cavity consists of two plane mirrors and two concave mirrors with a radius of curvature of 50 mm. The wedged PPKTP is placed in the smallest beam waist of the cavity. The mode converter is employed to generate high-purity HG20 pump mode with a measured purity of 98.0%. The mode-matching effciency of 93.0% is achieved between the high-purity HG20 pump mode and the OPO cavity. The homodyne visibility of the HG10 mode is 98.1%. We experimentally demonstrate the generation of 9.10 dB HG10 mode squeezed light using a doubly-resonant OPO with only 51 mW of HG20 pump mode, and simultaneously achieve 9.20 dB of squeezing in the HG00 mode with 27 mW of HG00 pump mode. The inferred squeezing level of both HG10 and HG00 mode squeezed light reaches up to 12.15 dB. The quantum technology has solved the pump power limitations in optical parametric oscillators, enabling the generation of high-order HG mode states with high squeezing level and providing an effective method to enhance spatial measurement precision.
  • [1]

    Heinze J, Danzmann K, Willke B, Vahlbruch H 2022 Phys. Rev. Lett. 129031101

    [2]

    Acernese F, Agathos M, Aiello L, Ain A, Allocca A, Amato A, Ansoldi S, Antier S, Arène M, et al. 2020 Phys. Rev. Lett. 125131101

    [3]

    Pooser R C, Lawrie B 2015 Optica 2393

    [4]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89035002

    [5]

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64234210(in Chinese) [孙恒信, 刘奎, 张俊香, 郜江瑞2015 64234210]

    [6]

    Defienne H, Bowen W P, Chekhova M, Lemos G B, Oron D, Ramelow S, Treps N, Faccio D 2024 Nat. Photonics 181024

    [7]

    Roman R V, Fainsin D, Zanin G L, Treps N, Diamanti E, Parigi V 2024 Phys. Rev. Research 6043113

    [8]

    Shi S P, Tian L, Wang Y J, Zheng Y H, Xie C D, Peng K H 2020 Phy. Rev. Lett. 125070502

    [9]

    Liu X, Shi S P, Wu Y M, Wang X, Tian L, Li W, Wang Y J, Zheng Y H 2025 Sci. China-Phys. Mech. Astron. 68124211

    [10]

    Shi S P, Wang Y J, Tian L, Li W, Wu Y M, Wang Q W, Zheng Y H, Peng K H 2023 Laser Photonics Rev. 172200508

    [11]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 1925763

    [12]

    Wang J P, Zhang W H, Li R X, Tian L, Wang Y J, Zheng Y H 2020 Acta Phys. Sin. 69234204(in Chinese) [王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉2020 69234204]

    [13]

    Wu L A, Kimble H J, Hall J H, Wu H F 1986 Phys. Rev. Lett. 572520

    [14]

    Gao L, Zheng L A, Lu B, Shi S P, Tian L, Zheng Y H 2024 Light Sci. Appl. 13294

    [15]

    Serikawa T, Yoshikawa J I, Makino K, Frusawa A 2016 Opt. Express 2428383

    [16]

    Wu Y M, Shi S P, Liu X, Tian L, Li W, Wang Y J, Zheng Y H 2025 Phys. Rev. Applied 23044021

    [17]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117110801

    [18]

    Li Z, Guo X L, Sun H X, Liu K, Gao J R 2023 Opt. Express 313651

    [19]

    Heinze J, Willke B, Vahlbruch H 2022 Phys. Rev. Lett. 128083606

    [20]

    Li J, Li J M, Cai C X, Sun H X, Liu K, Gao J R 2019 Acta Phys. Sin. 68034204(in Chinese) [李娟, 李佳明, 蔡春晓, 孙恒信, 刘奎, 郜江瑞2019 68034204]

    [21]

    Yesharim O, Tshuva G, Arie A 2024 APL Photonics 9106116

    [22]

    Goodwin-Jones A W, Cabrita R, Korobko M, Beuzekom M V, Brown D D, Fafone V, Heijningen J V, Rocchi A, Schiworski M G, Tacca M 2024 Optica 11273

    [23]

    Treps N, Grosse N, Bowen W P, Fabre C, Bachor H A, Lam P K 2003 Science 301940

    [24]

    Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A, Bowen W P 2013 Nat. Photonics 7229

    [25]

    Steinlechner S, Rohweder N O, Korobko M, Töyrä D, Freise A, Schnabel R 2018 Phys. Rev. Lett. 121263602

    [26]

    Zhang C X, Chen Y C, Chen G, Sun H X, Zhang J, Liu K, Yang R G, Gao J R 2024 Phys. Rev. Applied 22054068

    [27]

    Semmler M, Berg-Johansen S, Chille V, Gabriel C, Banzer P, Aiello A, Marquardt C, Leuchs G 2016 Opt. Express 247633

    [28]

    Ma L, Guo H, Sun H X, Liu K, Su B D, Gao J R 2020 Photon. Res. 81422

    [29]

    Lassen M, Delaubert V, Harb C C, Lam P K, Treps N, Bachor H A 2006 J. Eur. Opt. Soc. Rapid Publ. 106003

    [30]

    Guo J, Cai C X, Ma L, Liu K, Sun H X, Gao J R 2017 Opt. Express 254985

    [31]

    Stefszky M S, Mow-Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, Mcclelland D E 2012 Class. Quantum Grav. 29145015

    [32]

    Li Z, Guo H, Liu H B, Li J M, Sun H X, Yang R G, Liu K, Gao J R 2022 Adv. Quantum Technol. 52200055

    [33]

    Courtois J, Mohamed A, Romanini D 2013 Phys. Rev. A 88043844

    [34]

    Liu P, Li J, Li X H, Xiang X, Wang S F, Liu T, Cao M T, Zhang S G, Cai Y, Dong R F 2024 Opt. Express 3242784

    [35]

    Schönbeck A, Thies F, Schnabel R 2018 Opt. Lett. 43110

    [36]

    Kozlovsky W J, Nabors C D, Byer R 1988 IEEE J. Quantum Electron. 24913

    [37]

    Aoki T, Takahashi G, Furusawa A 2006 Opt. Express 146930

    [38]

    Zhou Z Y, Liu S L, Li Y, Ding D S, Zhang W, Shi S, Dong M X, Shi B S, Guo G C 2016 Phys. Rev. Lett. 117103601

    [39]

    Liu S S, Lv Y H, Wang X T, Wang J B, Lou Y B, Jing J T 2024 Phys. Rev. Lett. 132100801

  • [1] 张若涛, 张文慧. 压缩增强的强度噪声抑制机理.  , doi: 10.7498/aps.74.20241674
    [2] 王渝, 吴艺豪, 李易璞, 卢凯翔, 伊天成, 张云波. 二维旋转谐振子势中单粒子的跳频压缩及演化.  , doi: 10.7498/aps.73.20231929
    [3] 蔚娟, 张岩, 吴银花, 杨文海, 闫智辉, 贾晓军. 双模压缩态量子相干性演化的实验研究.  , doi: 10.7498/aps.72.20221923
    [4] 贺海, 杨鹏飞, 张鹏飞, 李刚, 张天才. 基于1/4波片的腔增强自发参量下转换过程中双折射效应的补偿.  , doi: 10.7498/aps.72.20230422
    [5] 曲良辉, 都琳, 曹子露, 胡海威, 邓子辰. 化学自突触的电导扰动诱导相干或随机双共振现象.  , doi: 10.7498/aps.69.20200856
    [6] 翟泽辉, 郝温静, 刘建丽, 段西亚. 用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量.  , doi: 10.7498/aps.69.20200589
    [7] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计.  , doi: 10.7498/aps.69.20200890
    [8] 谭巍, 邱晓东, 赵刚, 侯佳佳, 贾梦源, 闫晓娟, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 高效频率转换下双波长外腔共振和频技术研究.  , doi: 10.7498/aps.65.074202
    [9] 刘增俊, 翟泽辉, 孙恒信, 郜江瑞. 低频压缩态光场的制备.  , doi: 10.7498/aps.65.060401
    [10] 葛烨, 胡以华, 舒嵘, 洪光烈. 一种新型的用于差分吸收激光雷达中脉冲式光学参量振荡器的种子激光器的频率稳定方法.  , doi: 10.7498/aps.64.020702
    [11] 郭靖, 何广源, 焦中兴, 王彪. 高效率内腔式2 μm简并光学参量振荡器.  , doi: 10.7498/aps.64.084207
    [12] 厉巧巧, 张昕, 吴江滨, 鲁妍, 谭平恒, 冯志红, 李佳, 蔚翠, 刘庆斌. 双层石墨烯位于18002150 cm-1频率范围内的和频拉曼模.  , doi: 10.7498/aps.63.147802
    [13] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器.  , doi: 10.7498/aps.63.054205
    [14] 李巍, 王永钢, 杨伯君. 损耗对表面等离子体激元压缩态的影响.  , doi: 10.7498/aps.60.024203
    [15] 崔前进, 徐一汀, 宗楠, 鲁远甫, 程贤坤, 彭钦军, 薄勇, 崔大复, 许祖彦. 高功率腔内双共振2μm光参量振荡器特性研究.  , doi: 10.7498/aps.58.1715
    [16] 林 敏, 方利民, 朱若谷. 双频信号作用下耦合双稳系统的双共振特性.  , doi: 10.7498/aps.57.2638
    [17] 叶晨光, 张 靖. 利用PPKTP晶体产生真空压缩态及其Wigner准概率分布函数的量子重构.  , doi: 10.7498/aps.57.6962
    [18] 张婉娟, 王治国, 谢双媛, 羊亚平. 频率变化的压缩态光场与原子的相互作用.  , doi: 10.7498/aps.56.2168
    [19] 金 硕, 解炳昊. 外磁场中海森伯反铁磁模型的代数结构和压缩态解.  , doi: 10.7498/aps.55.3880
    [20] 邓文基, 许运华, 刘 平. 测不准关系和最小不确定态.  , doi: 10.7498/aps.52.2961
计量
  • 文章访问数:  180
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-26

/

返回文章
返回
Baidu
map