-
高阶厄米高斯(HG)模压缩态光场作为一种量子光源,在量子精密测量,量子成像等领域有重要的应用价值。HG模式量子态增强空间测量精度很大程度上取决于其压缩度。然而,利用光学参量振荡器产生高阶HG模压缩光的压缩度主要受泵浦功率限制。本文理论分析并实验验证利用楔角非线性晶体构成的双共振光学参量振荡器,在低泵浦功率条件下实现HG10模压缩态光场的实验制备。这里,通过调节光场经历楔角非线性晶体的长度和工作温度,从而补偿HG20与HG10模式在腔内的Gouy相位差和非线性晶体中不同频率光场引起的像散,同时实现双共振条件和相位匹配要求。实验结果表明仅需51mW的HG20模式泵浦光操控光学参量振荡器产生9.1 dB的HG10模压缩态光场。该量子技术解决了光学参量振荡器产生高阶横模量子态受泵浦功率限制的问题,可用于制备高压缩度的高阶HG模压缩态光场,为提高空间测量精度提供有效手段。The high-order Hermite-Gaussian (HG) mode squeezed light, as one of the important quantum sources, has significant application in quantum precision measurement and quantum imaging. The enhancement of spatial measurement precision largely depends on the squeezing level of high-order HG-mode quantum states. However, the squeezing level of high-order HG modes is primarily limited by the external pump power in the optical parametric oscillator (OPO) cavity. It is well known that the OPO with double resonance for both squeezed light and pump light enables to lower external pump power. The generation of HG10 mode squeezed light differs from that of HG00 mode squeezed light, with an additional Gouy phase shift introduced between the HG20 pump mode and HG10 down-conversion mode within the OPO cavity. In this paper, we present a theoretical analysis and the experimental generation of HG10 mode squeezed light at lower external pump power using a doubly-resonant OPO based on a wedged periodically poled KTiOPO4 (PPKTP) crystal. By precisely controlling both the propagation length of the optical field and temperature in the wedged PPKTP crystal, we simultaneously compensate for the Gouy phase shift between the HG20 and HG10 modes as well as the astigmatism induced by the frequency-dependent refractive index. This configuration allows double resonance for both the HG20 pump mode and the HG10 squeezed mode while operating close to optimum phase matching conditions. Increasing the reflectivity of the input coupler of OPO cavity enhances the intra-cavity circulating power of the pump light, thereby reducing the required external pump power. Here, the bow-tie-shaped OPO cavity consists of two plane mirrors and two concave mirrors with a radius of curvature of 50 mm. The wedged PPKTP is placed in the smallest beam waist of the cavity. The mode converter is employed to generate high-purity HG20 pump mode with a measured purity of 98.0%. The mode-matching effciency of 93.0% is achieved between the high-purity HG20 pump mode and the OPO cavity. The homodyne visibility of the HG10 mode is 98.1%. We experimentally demonstrate the generation of 9.10 dB HG10 mode squeezed light using a doubly-resonant OPO with only 51 mW of HG20 pump mode, and simultaneously achieve 9.20 dB of squeezing in the HG00 mode with 27 mW of HG00 pump mode. The inferred squeezing level of both HG10 and HG00 mode squeezed light reaches up to 12.15 dB. The quantum technology has solved the pump power limitations in optical parametric oscillators, enabling the generation of high-order HG mode states with high squeezing level and providing an effective method to enhance spatial measurement precision.
-
Keywords:
- high-order Hermite-Gaussian mode /
- squeezed state /
- optical parametric oscillator /
- double resonance
-
[1] Heinze J, Danzmann K, Willke B, Vahlbruch H 2022 Phys. Rev. Lett. 129031101
[2] Acernese F, Agathos M, Aiello L, Ain A, Allocca A, Amato A, Ansoldi S, Antier S, Arène M, et al. 2020 Phys. Rev. Lett. 125131101
[3] Pooser R C, Lawrie B 2015 Optica 2393
[4] Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89035002
[5] Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64234210(in Chinese) [孙恒信, 刘奎, 张俊香, 郜江瑞2015 64234210]
[6] Defienne H, Bowen W P, Chekhova M, Lemos G B, Oron D, Ramelow S, Treps N, Faccio D 2024 Nat. Photonics 181024
[7] Roman R V, Fainsin D, Zanin G L, Treps N, Diamanti E, Parigi V 2024 Phys. Rev. Research 6043113
[8] Shi S P, Tian L, Wang Y J, Zheng Y H, Xie C D, Peng K H 2020 Phy. Rev. Lett. 125070502
[9] Liu X, Shi S P, Wu Y M, Wang X, Tian L, Li W, Wang Y J, Zheng Y H 2025 Sci. China-Phys. Mech. Astron. 68124211
[10] Shi S P, Wang Y J, Tian L, Li W, Wu Y M, Wang Q W, Zheng Y H, Peng K H 2023 Laser Photonics Rev. 172200508
[11] Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 1925763
[12] Wang J P, Zhang W H, Li R X, Tian L, Wang Y J, Zheng Y H 2020 Acta Phys. Sin. 69234204(in Chinese) [王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉2020 69234204]
[13] Wu L A, Kimble H J, Hall J H, Wu H F 1986 Phys. Rev. Lett. 572520
[14] Gao L, Zheng L A, Lu B, Shi S P, Tian L, Zheng Y H 2024 Light Sci. Appl. 13294
[15] Serikawa T, Yoshikawa J I, Makino K, Frusawa A 2016 Opt. Express 2428383
[16] Wu Y M, Shi S P, Liu X, Tian L, Li W, Wang Y J, Zheng Y H 2025 Phys. Rev. Applied 23044021
[17] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117110801
[18] Li Z, Guo X L, Sun H X, Liu K, Gao J R 2023 Opt. Express 313651
[19] Heinze J, Willke B, Vahlbruch H 2022 Phys. Rev. Lett. 128083606
[20] Li J, Li J M, Cai C X, Sun H X, Liu K, Gao J R 2019 Acta Phys. Sin. 68034204(in Chinese) [李娟, 李佳明, 蔡春晓, 孙恒信, 刘奎, 郜江瑞2019 68034204]
[21] Yesharim O, Tshuva G, Arie A 2024 APL Photonics 9106116
[22] Goodwin-Jones A W, Cabrita R, Korobko M, Beuzekom M V, Brown D D, Fafone V, Heijningen J V, Rocchi A, Schiworski M G, Tacca M 2024 Optica 11273
[23] Treps N, Grosse N, Bowen W P, Fabre C, Bachor H A, Lam P K 2003 Science 301940
[24] Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A, Bowen W P 2013 Nat. Photonics 7229
[25] Steinlechner S, Rohweder N O, Korobko M, Töyrä D, Freise A, Schnabel R 2018 Phys. Rev. Lett. 121263602
[26] Zhang C X, Chen Y C, Chen G, Sun H X, Zhang J, Liu K, Yang R G, Gao J R 2024 Phys. Rev. Applied 22054068
[27] Semmler M, Berg-Johansen S, Chille V, Gabriel C, Banzer P, Aiello A, Marquardt C, Leuchs G 2016 Opt. Express 247633
[28] Ma L, Guo H, Sun H X, Liu K, Su B D, Gao J R 2020 Photon. Res. 81422
[29] Lassen M, Delaubert V, Harb C C, Lam P K, Treps N, Bachor H A 2006 J. Eur. Opt. Soc. Rapid Publ. 106003
[30] Guo J, Cai C X, Ma L, Liu K, Sun H X, Gao J R 2017 Opt. Express 254985
[31] Stefszky M S, Mow-Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, Mcclelland D E 2012 Class. Quantum Grav. 29145015
[32] Li Z, Guo H, Liu H B, Li J M, Sun H X, Yang R G, Liu K, Gao J R 2022 Adv. Quantum Technol. 52200055
[33] Courtois J, Mohamed A, Romanini D 2013 Phys. Rev. A 88043844
[34] Liu P, Li J, Li X H, Xiang X, Wang S F, Liu T, Cao M T, Zhang S G, Cai Y, Dong R F 2024 Opt. Express 3242784
[35] Schönbeck A, Thies F, Schnabel R 2018 Opt. Lett. 43110
[36] Kozlovsky W J, Nabors C D, Byer R 1988 IEEE J. Quantum Electron. 24913
[37] Aoki T, Takahashi G, Furusawa A 2006 Opt. Express 146930
[38] Zhou Z Y, Liu S L, Li Y, Ding D S, Zhang W, Shi S, Dong M X, Shi B S, Guo G C 2016 Phys. Rev. Lett. 117103601
[39] Liu S S, Lv Y H, Wang X T, Wang J B, Lou Y B, Jing J T 2024 Phys. Rev. Lett. 132100801
计量
- 文章访问数: 180
- PDF下载量: 4
- 被引次数: 0