搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于前馈神经网络的调频连续波激光雷达扫频非线性预失真校正方案

童心 王秋蘋 刘俊岐 欧埔 RashidMd Mamun-Ur 雷志强 张荷曼 陆丹 夏光琼 吴正茂

引用本文:
Citation:

基于前馈神经网络的调频连续波激光雷达扫频非线性预失真校正方案

童心, 王秋蘋, 刘俊岐, 欧埔, RashidMd Mamun-Ur, 雷志强, 张荷曼, 陆丹, 夏光琼, 吴正茂

Pre-distortion correction method for swept-frequency nonlinearity of frequency-modulated continuous-wave light detection and ranging based on feedforward neural networks

TONG Xin, WANG Qiupin, LIU Junqi, OU Pu, RASHID Md Mamun-Ur, LEI Zhiqiang, ZHANG Heman, LU Dan, XIA Guangqiong, WU Zhengmao
cstr: 32037.14.aps.74.20250828
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 发射源的高度扫频线性是调频连续波激光雷达实现高精确测量的必备条件. 针对目前基于电流调制分布式反馈半导体激光器产生的调频连续波信号存在扫频非线性问题, 本文提出了基于前馈神经网络的扫频非线性预失真方案. 该方案首先通过实验获取分布式反馈半导体激光器在调制电流为锯齿波情形下输出的时频曲线; 将锯齿波调制电流作为输入, 时频曲线作为输出, 基于前馈神经网络获取输入到输出的非线性映射关系; 接下来, 利用反向传播算法生成能补偿分布式反馈半导体激光器输出非线性的预失真调制电流波形. 针对调制电流频率处于1—10 kHz的情形进行实验研究, 结果表明, 采用基于前馈神经网络的扫频非线性矫正方案后, 分布式反馈半导体激光器所产生的调频连续波信号的扫频非线性从之前的10–3量级降低到10–5量级; 残差均方根值从之前的百MHz量级降低到十MHz量级. 本文提出的扫频非线性预失真校正方案有望为高精度的调频连续波激光雷达系统的扫频信号线性化技术提供新思路.
    To address the frequency sweeping nonlinearity of frequency-modulated continuous-wave signals generated by a current-modulated distributed feedback laser diode, we propose and experimentally demonstrate a pre-distortion method based on a feedforward neural network. For this method, the beat frequency signals of the distributed feedback laser diode under a sawtooth-waveform current modulation are first experimentally obtained, and then the time-frequency curves of the distributed feedback laser diode output are obtained by performing a Hilbert transform on the beat signals. Subsequently, three-layer feedforward neural networks with 10, 5, and 3 hidden-layer neurons are constructed, respectively. By taking the driving current and the time-frequency curves as the input and output of the feedforward neural network, respectively, the nonlinear mapping relationship between them is established. Finally, a backpropagation algorithm is utilized to obtain the pre-distortion modulation current. Taking this current under the modulation frequency from 1 kHz to 10 kHz to drive the distributed feedback semiconductor laser (DFB-LD), the performance of the generated frequency-modulated continuous-wave (FMCW) signals is analyzed. We use nonlinear regression coefficients and residual root mean square values to characterize the performance. For the modulation frequency set at 4 kHz, the frequency sweeping nonlinearity and the residual root mean square value are reduced from 5.29×10–3 and 281 MHz to 1.77×10–5 and 15.15 MHz, respectively. With the modulation frequency fixed at 6 kHz, the frequency sweeping nonlinearity decreases from 5.58×10–3 to 1.52×10–5 and the residual root mean square declines from 251.98 MHz to 12.17 MHz in the proposed scheme. Across the entire tested frequency range from 1 kHz to 10 kHz, the nonlinearity remains stable at ~10–5 after adopting the pre-distortion scheme, with RMS values consistently below 20 MHz. The proposed method is expected to provide a new scheme for the linearization technology of the sweep signal in high-precision frequency-modulated continuous-wave light detection and ranging systems.
      通信作者: 陆丹, ludan@semi.ac.cn ; 吴正茂, zmwu@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62335015, 61875167)、重庆市自然科学基金(批准号: CSTB2022NSCQ-MSX0313)和重庆市研究生科研创新项目(批准号: CYB23109)资助的课题.
      Corresponding author: LU Dan, ludan@semi.ac.cn ; WU Zhengmao, zmwu@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62335015, 61875167), the Natural Science Foundation of Chongqing, China (Grant No. CSTB2022NSCQ-MSX0313), and the Postgraduates’ Research and Innovation Project of Chongqing, China (Grant No. CYB23109).
    [1]

    Golconda S 2010 Ph. D. Dissertation (Lafayette: University of Louisiana at Lafayette

    [2]

    Bețco D, Pârvu P V, Ciudin S 2024 Acta Astronaut. 216 55Google Scholar

    [3]

    Behera L, Agarwal S, Sandhan T, Sharma P, Kumar A, Ranjan A, Watsa S, Singh A, Kasina J S 2025 Int. J. Intell. Unmanne 13 92Google Scholar

    [4]

    Rablau C 2019 Fifteenth Conference on Education and Training in Optics and Photonics: ETOP 2019 Quebec, Canada, May 21–24, 2019 p11143

    [5]

    Bhardwaj A, Sam L, Bhardwaj A, Martín-Torres F J 2016 Remote Sens. Environ. 177 125Google Scholar

    [6]

    Wang Q P, Xia G Q, Xie Y K, Ou P, He C T, Hu S, Zhang F L, Zhao M R, Wu Z M 2024 IEEE J. Quant. Elect. 60 2200408Google Scholar

    [7]

    梁虹, 应康, 王迪, 魏金金, 李璇, 皮浩洋, 魏芳, 蔡海文 2021 中国激光 48 1606001Google Scholar

    Liang H, Ying K, Wang D Wei J J, Li X, Pi H Y, Wei F, Cai H W 2021 Chin. J. Lasers 48 1606001Google Scholar

    [8]

    Yang J W, Meng Y, Hu X L, Yang T X, Wang Z Y, Jia D F, Ge C F 2024 J. Lightw. Technol. 42 1870Google Scholar

    [9]

    Liu C X, Guo Y Y, Xu R Y, Lu L J, Li Y, Chen J P, Zhou L J 2024 Laser Photon. Rev. 18 2300882Google Scholar

    [10]

    Zhou P, Zhang R H, Li N Q, Jiang Z D, Pan S L 2022 J. Lightw. Technol. 40 2862Google Scholar

    [11]

    Yao Z Y, Mauldin T, Hefferman G, Wei T 2019 IEEE J. Sel. Top. Quant. Electron. 25 1502605Google Scholar

    [12]

    Na Q X, Xie Q J, Zhang N, Zhang L X, Li Y Z, Chen B S, Peng T, Zuo G M, Zhuang D W, Song J F 2023 Opt. Laser Eng. 164 107523Google Scholar

    [13]

    Knipp S 2018 M. S. Thesis (Kingston: University of Rhode Island

    [14]

    Lin C X, Wang Y F, Tan Y D 2023 J. Lightw. Technol. 41 2846Google Scholar

    [15]

    Baumann E, Giorgetta F R, Coddington I, Sinclair L C, Knabe K, Swann W C, Newbury N R 2013 Opt. Lett. 38 2026Google Scholar

    [16]

    Xie W L, Meng Y X, Feng Y X, Zhou H J, Zhang L, Wei W, Dong Y 2021 Opt. Express 29 604Google Scholar

    [17]

    Satyan N, Vasilyev A, Rakuljic G, Leyva V, Yariv A 2009 Opt. Express 17 15991Google Scholar

    [18]

    Satyan N, Vasilyev A, Rakuljic G, White J O, Yariv A 2012 Opt. Express 20 25213Google Scholar

    [19]

    Zhang X S, Pouls J, Wu M C 2019 Opt. Express 27 9965Google Scholar

    [20]

    Cao X Y, Wu K, Li C, Zhang G J, Chen J P 2021 J. Opt. Soc. Am. B 38 D8Google Scholar

    [21]

    Li P, Zhang Y T, Yao J Q 2022 Remote Sens. 14 3455Google Scholar

    [22]

    Jiang Y C, Hu M, Xu M M, Li H Z, Zhou X F, Bi M H, Pan S Q, Liu C 2024 IEEE J. Quant. Elect. 60 1400107Google Scholar

    [23]

    Fang C, Ruan Y X, Guo Q H, Yu Y G 2025 Opt. Laser Technol. 180 111449Google Scholar

  • 图 1  FMCW LiDAR的距离测量原理示意图

    Fig. 1.  Schematic diagram of the ranging principle for frequency-modulated continuous-wave light detection and ranging (FMCW LiDAR).

    图 2  BP算法示意图

    Fig. 2.  Schematic diagram of BP algorithm.

    图 3  基于FNN的FMCW LiDAR扫频非线性预失真方案 (a) 基于FNN的FMCW LiDAR扫频非线性预失真方案的实验系统; (b) 构建的FNN示意图

    Fig. 3.  FNN-based frequency sweep nonlinearity pre-distortion scheme for FMCW LiDAR: (a) Experimental system of the FNN-based frequency sweep nonlinearity pre-distortion scheme for FMCW LiDAR; (b) schematic diagram of the constructed FNN.

    图 4  建立的FNN模型得到的训练误差直方图

    Fig. 4.  Training error histogram of the established FNN model.

    图 5  4 kHz调制频率下的驱动电压、拍频信号和频谱图 (a)—(c) 预失真前; (d)—(f) 预失真后

    Fig. 5.  Drive voltage, beat signal, and spectrogram at 4 kHz modulation frequency: (a)–(c) Before pre-distortion; (d)–(f) after pre-distortion.

    图 6  在4 kHz调制频率下FMCW信号频率随时间的变化曲线(a), (c)和感兴趣区域内频率随时间的变化(蓝色)以及残差随时间的变化(橙色) (b), (d) (a), (b) 预失真前; (c), (d) 预失真后

    Fig. 6.  Time-varying frequency curve of the FMCW signal at a 4 kHz modulation frequency (a), (c) and time-varying frequency (blue) and residual error (orange) within the interested time window(b), (d): (a), (b) Without pre-distortion; (c), (d) with pre-distortion.

    图 7  在6 kHz调制频率下的驱动电压、拍频信号和频谱图 (a)—(c) 预失真前; (d)—(f) 预失真后

    Fig. 7.  Driving voltage, beat signal, and spectrum at 6 kHz modulation frequency: (a)–(c) Before pre-distortion; (d)–(f) after pre-distortion.

    图 8  在6 kHz调制频率下FMCW信号频率随时间的变化曲线(a), (c)和感兴趣区域内频率随时间的变化(蓝色)以及残差随时间的变化(橙色)(b), (d) (a), (b) 预失真前; (c), (d) 预失真后

    Fig. 8.  Time-varying frequency curve of the FMCW signal at a 6 kHz modulation frequency (a), (c) and time-varying frequency (blue) and residual error (orange) within the interested time window (b), (d): (a), (b) Without pre-distortion; (c), (d) with pre-distortion.

    图 9  扫频非线性和残差RMS误差棒随调制频率的变化 (a) 预失真前; (b) 预失真后

    Fig. 9.  Sweep nonlinearity and residual RMS values versus modulation frequency: (a) Before pre-distortion; (b) after pre-distortion.

    Baidu
  • [1]

    Golconda S 2010 Ph. D. Dissertation (Lafayette: University of Louisiana at Lafayette

    [2]

    Bețco D, Pârvu P V, Ciudin S 2024 Acta Astronaut. 216 55Google Scholar

    [3]

    Behera L, Agarwal S, Sandhan T, Sharma P, Kumar A, Ranjan A, Watsa S, Singh A, Kasina J S 2025 Int. J. Intell. Unmanne 13 92Google Scholar

    [4]

    Rablau C 2019 Fifteenth Conference on Education and Training in Optics and Photonics: ETOP 2019 Quebec, Canada, May 21–24, 2019 p11143

    [5]

    Bhardwaj A, Sam L, Bhardwaj A, Martín-Torres F J 2016 Remote Sens. Environ. 177 125Google Scholar

    [6]

    Wang Q P, Xia G Q, Xie Y K, Ou P, He C T, Hu S, Zhang F L, Zhao M R, Wu Z M 2024 IEEE J. Quant. Elect. 60 2200408Google Scholar

    [7]

    梁虹, 应康, 王迪, 魏金金, 李璇, 皮浩洋, 魏芳, 蔡海文 2021 中国激光 48 1606001Google Scholar

    Liang H, Ying K, Wang D Wei J J, Li X, Pi H Y, Wei F, Cai H W 2021 Chin. J. Lasers 48 1606001Google Scholar

    [8]

    Yang J W, Meng Y, Hu X L, Yang T X, Wang Z Y, Jia D F, Ge C F 2024 J. Lightw. Technol. 42 1870Google Scholar

    [9]

    Liu C X, Guo Y Y, Xu R Y, Lu L J, Li Y, Chen J P, Zhou L J 2024 Laser Photon. Rev. 18 2300882Google Scholar

    [10]

    Zhou P, Zhang R H, Li N Q, Jiang Z D, Pan S L 2022 J. Lightw. Technol. 40 2862Google Scholar

    [11]

    Yao Z Y, Mauldin T, Hefferman G, Wei T 2019 IEEE J. Sel. Top. Quant. Electron. 25 1502605Google Scholar

    [12]

    Na Q X, Xie Q J, Zhang N, Zhang L X, Li Y Z, Chen B S, Peng T, Zuo G M, Zhuang D W, Song J F 2023 Opt. Laser Eng. 164 107523Google Scholar

    [13]

    Knipp S 2018 M. S. Thesis (Kingston: University of Rhode Island

    [14]

    Lin C X, Wang Y F, Tan Y D 2023 J. Lightw. Technol. 41 2846Google Scholar

    [15]

    Baumann E, Giorgetta F R, Coddington I, Sinclair L C, Knabe K, Swann W C, Newbury N R 2013 Opt. Lett. 38 2026Google Scholar

    [16]

    Xie W L, Meng Y X, Feng Y X, Zhou H J, Zhang L, Wei W, Dong Y 2021 Opt. Express 29 604Google Scholar

    [17]

    Satyan N, Vasilyev A, Rakuljic G, Leyva V, Yariv A 2009 Opt. Express 17 15991Google Scholar

    [18]

    Satyan N, Vasilyev A, Rakuljic G, White J O, Yariv A 2012 Opt. Express 20 25213Google Scholar

    [19]

    Zhang X S, Pouls J, Wu M C 2019 Opt. Express 27 9965Google Scholar

    [20]

    Cao X Y, Wu K, Li C, Zhang G J, Chen J P 2021 J. Opt. Soc. Am. B 38 D8Google Scholar

    [21]

    Li P, Zhang Y T, Yao J Q 2022 Remote Sens. 14 3455Google Scholar

    [22]

    Jiang Y C, Hu M, Xu M M, Li H Z, Zhou X F, Bi M H, Pan S Q, Liu C 2024 IEEE J. Quant. Elect. 60 1400107Google Scholar

    [23]

    Fang C, Ruan Y X, Guo Q H, Yu Y G 2025 Opt. Laser Technol. 180 111449Google Scholar

  • [1] 王宇铎, 陈嘉鑫, 李彪. 基于扩展混合训练物理信息神经网络的非线性薛定谔方程求解和参数发现.  , 2025, 74(16): 160201. doi: 10.7498/aps.74.20250422
    [2] 祝沐, 佟首峰, 丁蕴丰, 张鹏. 基于物理约束神经网络的单模光纤非线性效应高精度解析.  , 2025, 74(20): 204201. doi: 10.7498/aps.74.20250804
    [3] 田十方, 李彪. 基于梯度优化物理信息神经网络求解复杂非线性问题.  , 2023, 72(10): 100202. doi: 10.7498/aps.72.20222381
    [4] 龙康, 孔明, 刘璐, 刘维, 华杭波, 许新科. 基于Lomb-Scargle算法的激光扫频干涉非线性校正方法.  , 2023, 72(3): 034205. doi: 10.7498/aps.72.20221754
    [5] 魏连锁, 李华, 吴迪, 郭媛. 基于BP神经网络模型时钟同步误差补偿算法.  , 2021, 70(11): 114203. doi: 10.7498/aps.70.20201641
    [6] 王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜. 基于前馈神经网络的等离子体光谱诊断方法.  , 2021, 70(9): 095211. doi: 10.7498/aps.70.20202248
    [7] 李茹依, 王光义, 董玉姣, 周玮. 多频正弦混沌细胞神经网络及其复杂动力学特性.  , 2020, 69(24): 240501. doi: 10.7498/aps.69.20200725
    [8] 院琳, 杨雪松, 王秉中. 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测.  , 2019, 68(17): 170503. doi: 10.7498/aps.68.20190327
    [9] 汪毅, 刘珊珊, 张玮茜, 蔡怀宇, 陈晓冬. 扫频光学相干层析角膜图像轮廓自动提取算法.  , 2019, 68(20): 204201. doi: 10.7498/aps.68.20190731
    [10] 李瑞国, 张宏立, 范文慧, 王雅. 基于改进教学优化算法的Hermite正交基神经网络混沌时间序列预测.  , 2015, 64(20): 200506. doi: 10.7498/aps.64.200506
    [11] 李欢, 王友国. 一类非线性神经网络中噪声改善信息传输.  , 2014, 63(12): 120506. doi: 10.7498/aps.63.120506
    [12] 于舒娟, 宦如松, 张昀, 冯迪. 基于混沌神经网络的盲检测改进新算法.  , 2014, 63(6): 060701. doi: 10.7498/aps.63.060701
    [13] 郭永峰, 谭建国. 一类非线性神经网络系统的超阈值随机共振现象.  , 2012, 61(17): 170502. doi: 10.7498/aps.61.170502
    [14] 李盼池, 王海英, 戴庆, 肖红. 量子过程神经网络模型算法及应用.  , 2012, 61(16): 160303. doi: 10.7498/aps.61.160303
    [15] 刘金海, 张化光, 冯健. 基于视神经网络的混沌时间序列奇异信号实时检测算法.  , 2010, 59(7): 4472-4479. doi: 10.7498/aps.59.4472
    [16] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡.  , 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [17] 张军峰, 胡寿松. 基于一种新型聚类算法的RBF神经网络混沌时间序列预测.  , 2007, 56(2): 713-719. doi: 10.7498/aps.56.713
    [18] 熊 涛, 张便利, 常胜江, 申金媛, 张延忻. 基于Hopfield神经网络的信元调度多重输入队列ATM交换结构及算法.  , 2005, 54(5): 2435-2440. doi: 10.7498/aps.54.2435
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制.  , 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [20] 神经网络的自适应删剪学习算法及其应用.  , 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
计量
  • 文章访问数:  426
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-25
  • 修回日期:  2025-09-17
  • 上网日期:  2025-09-24
  • 刊出日期:  2025-11-20

/

返回文章
返回
Baidu
map